Functions on the model orbit in $E_8$
HTML articles powered by AMS MathViewer
- by Jeffrey Adams, Jing-Song Huang and David A. Vogan, Jr.
- Represent. Theory 2 (1998), 224-263
- DOI: https://doi.org/10.1090/S1088-4165-98-00048-X
- Published electronically: June 2, 1998
- PDF | Request permission
Abstract:
We decompose the ring of regular functions on the unique coadjoint orbit for complex $E_{8}$ of dimension 128, finding that every irreducible representation appears exactly once. This confirms a conjecture of McGovern. We also study the unique real form of this orbit.References
- Dan Barbasch and David A. Vogan Jr., Unipotent representations of complex semisimple groups, Ann. of Math. (2) 121 (1985), no. 1, 41–110. MR 782556, DOI 10.2307/1971193
- I. N. Bernšteĭn, I. M. Gel′fand, and S. I. Gel′fand, Models of representations of compact Lie groups, Funkcional. Anal. i Priložen. 9 (1975), no. 4, 61–62 (Russian). MR 0414792, DOI 10.1007/BF01078183
- Saunders MacLane and O. F. G. Schilling, Infinite number fields with Noether ideal theories, Amer. J. Math. 61 (1939), 771–782. MR 19, DOI 10.2307/2371335
- N. Bourbaki, Groupes et algèbres de Lie. Chapitres 4, 5, et 6, Masson, Paris, 1981.
- Roger W. Carter, Finite groups of Lie type, Wiley Classics Library, John Wiley & Sons, Ltd., Chichester, 1993. Conjugacy classes and complex characters; Reprint of the 1985 original; A Wiley-Interscience Publication. MR 1266626
- David H. Collingwood and William M. McGovern, Nilpotent orbits in semisimple Lie algebras, Van Nostrand Reinhold Mathematics Series, Van Nostrand Reinhold Co., New York, 1993. MR 1251060
- Dragomir Ž. Đoković, Classification of nilpotent elements in simple exceptional real Lie algebras of inner type and description of their centralizers, J. Algebra 112 (1988), no. 2, 503–524. MR 926619, DOI 10.1016/0021-8693(88)90104-4
- Michel Duflo, Théorie de Mackey pour les groupes de Lie algébriques, Acta Math. 149 (1982), no. 3-4, 153–213 (French). MR 688348, DOI 10.1007/BF02392353
- E. B. Dynkin, Semisimple subalgebras of semisimple Lie algebras, Amer. Math. Soc. Transl., Ser. 2, 6 (1957), 111–245.
- William A. Graham, Functions on the universal cover of the principal nilpotent orbit, Invent. Math. 108 (1992), no. 1, 15–27. MR 1156383, DOI 10.1007/BF02100596
- Harish-Chandra, Harmonic analysis on real reductive groups. I. The theory of the constant term, J. Functional Analysis 19 (1975), 104–204. MR 0399356, DOI 10.1016/0022-1236(75)90034-8
- Sigurdur Helgason, Differential geometry, Lie groups, and symmetric spaces, Pure and Applied Mathematics, vol. 80, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1978. MR 514561
- V. Hinich, On the singularities of nilpotent orbits, Israel J. Math. 73 (1991), no. 3, 297–308. MR 1135219, DOI 10.1007/BF02773843
- James E. Humphreys, Introduction to Lie algebras and representation theory, Graduate Texts in Mathematics, Vol. 9, Springer-Verlag, New York-Berlin, 1972. MR 0323842, DOI 10.1007/978-1-4612-6398-2
- Anthony W. Knapp, Representation theory of semisimple groups, Princeton Mathematical Series, vol. 36, Princeton University Press, Princeton, NJ, 1986. An overview based on examples. MR 855239, DOI 10.1515/9781400883974
- B. Kostant, Lie algebra cohomology and the generalized Borel-Weil theorem, Ann. of Math. 74 (1961), 329–387.
- B. Kostant and S. Rallis, Orbits and representations associated with symmetric spaces, Amer. J. Math. 93 (1971), 753–809. MR 311837, DOI 10.2307/2373470
- I. G. Macdonald, Symmetric functions and Hall polynomials, 2nd ed., Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1995. With contributions by A. Zelevinsky; Oxford Science Publications. MR 1354144
- William M. McGovern, Rings of regular functions on nilpotent orbits and their covers, Invent. Math. 97 (1989), no. 1, 209–217. MR 999319, DOI 10.1007/BF01850661
- William M. McGovern, Rings of regular functions on nilpotent orbits. II. Model algebras and orbits, Comm. Algebra 22 (1994), no. 3, 765–772. MR 1261003, DOI 10.1080/00927879408824874
- Wilfried Schmid, Die Randwerte holomorpher Funktionen auf hermitesch symmetrischen Räumen, Invent. Math. 9 (1969/70), 61–80 (German). MR 259164, DOI 10.1007/BF01389889
- J. Schwartz, The determination of the admissible orbits in the real classical groups, Ph.D. dissertation, Massachusetts Institute of Technology, Cambridge, Massachusetts, 1987.
- Jir\B{o} Sekiguchi, Remarks on real nilpotent orbits of a symmetric pair, J. Math. Soc. Japan 39 (1987), no. 1, 127–138. MR 867991, DOI 10.2969/jmsj/03910127
- Pierre Torasso, Quantification géométrique, opérateurs d’entrelacement et représentations unitaires de $(\widetilde \textrm {SL})_3(\textbf {R})$, Acta Math. 150 (1983), no. 3-4, 153–242 (French). MR 709141, DOI 10.1007/BF02392971
- David A. Vogan Jr., The algebraic structure of the representation of semisimple Lie groups. I, Ann. of Math. (2) 109 (1979), no. 1, 1–60. MR 519352, DOI 10.2307/1971266
- David A. Vogan Jr., Representations of real reductive Lie groups, Progress in Mathematics, vol. 15, Birkhäuser, Boston, Mass., 1981. MR 632407
- Anthony W. Knapp and David A. Vogan Jr., Cohomological induction and unitary representations, Princeton Mathematical Series, vol. 45, Princeton University Press, Princeton, NJ, 1995. MR 1330919, DOI 10.1515/9781400883936
- David A. Vogan Jr., Dixmier algebras, sheets, and representation theory, Operator algebras, unitary representations, enveloping algebras, and invariant theory (Paris, 1989) Progr. Math., vol. 92, Birkhäuser Boston, Boston, MA, 1990, pp. 333–395. MR 1103596
- David A. Vogan Jr., Associated varieties and unipotent representations, Harmonic analysis on reductive groups (Brunswick, ME, 1989) Progr. Math., vol. 101, Birkhäuser Boston, Boston, MA, 1991, pp. 315–388. MR 1168491, DOI 10.1007/978-1-4612-0455-8_{1}7
- Michèle Vergne, Instantons et correspondance de Kostant-Sekiguchi, C. R. Acad. Sci. Paris Sér. I Math. 320 (1995), no. 8, 901–906 (French, with English and French summaries). MR 1328708
Bibliographic Information
- Jeffrey Adams
- Affiliation: Department of Mathematics, University of Maryland, College Park, Maryland 20742
- Email: jda@math.umd.edu
- Jing-Song Huang
- Affiliation: Department of Mathematics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
- MR Author ID: 304754
- Email: mahuang@uxmail.ust.hk
- David A. Vogan, Jr.
- Affiliation: Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
- Email: dav@math.mit.edu
- Received by editor(s): March 24, 1998
- Received by editor(s) in revised form: April 17, 1998
- Published electronically: June 2, 1998
- Additional Notes: The first author was supported in part by NSF grant DMS-94-01074. The second author was partially supported by RGC-CERG grant number HKUST588/94P and HKUST713/96P. The third author was supported in part by NSF grant DMS-94-02994.
- © Copyright 1998 American Mathematical Society
- Journal: Represent. Theory 2 (1998), 224-263
- MSC (1991): Primary 20G15, 22E46
- DOI: https://doi.org/10.1090/S1088-4165-98-00048-X
- MathSciNet review: 1628031