Intertwining operators into cohomology representations for semisimple Lie groups II
HTML articles powered by AMS MathViewer
- by Robert W. Donley, Jr.
- Represent. Theory 2 (1998), 278-297
- DOI: https://doi.org/10.1090/S1088-4165-98-00044-2
- Published electronically: June 16, 1998
- PDF | Request permission
Abstract:
One approach to constructing unitary representations for semisimple Lie groups utilizes analytic cohomology on open orbits of generalized flag manifolds. This work gives explicit formulas for harmonic cocycles associated to certain holomorphic homogeneous vector bundles, extending previous results of the author (Intertwining operators into cohomology representations for semisimple Lie groups, J. Funct. Anal. 151 (1997), 138–165). The key step shows that holomorphic discrete series representations and their limits are well-behaved with respect to restriction to certain submanifolds.References
- R. Aguilar-Rodriguez, Connections between representations of Lie groups and sheaf cohomology, Ph.D. dissertation, 1987.
- L. Barchini, Szegő mappings, harmonic forms, and Dolbeault cohomology, J. Funct. Anal. 118 (1993), no. 2, 351–406. MR 1250267, DOI 10.1006/jfan.1993.1148
- L. Barchini, A. W. Knapp, and R. Zierau, Intertwining operators into Dolbeault cohomology representations, J. Funct. Anal. 107 (1992), no. 2, 302–341. MR 1172027, DOI 10.1016/0022-1236(92)90110-5
- L. Barchini and R. Zierau, Square integrable harmonic forms and representation theory, Duke Math. J. (to appear).
- Robert J. Baston and Michael G. Eastwood, The Penrose transform, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1989. Its interaction with representation theory; Oxford Science Publications. MR 1038279
- Saunders MacLane and O. F. G. Schilling, Infinite number fields with Noether ideal theories, Amer. J. Math. 61 (1939), 771–782. MR 19, DOI 10.2307/2371335
- William Casselman and Dragan Miličić, Asymptotic behavior of matrix coefficients of admissible representations, Duke Math. J. 49 (1982), no. 4, 869–930. MR 683007, DOI 10.1215/S0012-7094-82-04943-2
- R. W. Donley, Jr., Intertwining operators into cohomology representations for semisimple Lie groups, J. Funct. Anal. 151 (1997), 138–165.
- Thomas Enright, Roger Howe, and Nolan Wallach, A classification of unitary highest weight modules, Representation theory of reductive groups (Park City, Utah, 1982) Progr. Math., vol. 40, Birkhäuser Boston, Boston, MA, 1983, pp. 97–143. MR 733809, DOI 10.1007/978-1-4684-6730-7_{7}
- Phillip Griffiths and Wilfried Schmid, Locally homogeneous complex manifolds, Acta Math. 123 (1969), 253–302. MR 259958, DOI 10.1007/BF02392390
- Sam Perlis, Maximal orders in rational cyclic algebras of composite degree, Trans. Amer. Math. Soc. 46 (1939), 82–96. MR 15, DOI 10.1090/S0002-9947-1939-0000015-X
- Cahit Arf, Untersuchungen über reinverzweigte Erweiterungen diskret bewerteter perfekter Körper, J. Reine Angew. Math. 181 (1939), 1–44 (German). MR 18, DOI 10.1515/crll.1940.181.1
- Cahit Arf, Untersuchungen über reinverzweigte Erweiterungen diskret bewerteter perfekter Körper, J. Reine Angew. Math. 181 (1939), 1–44 (German). MR 18, DOI 10.1515/crll.1940.181.1
- Hans Plesner Jakobsen and Michèle Vergne, Restrictions and expansions of holomorphic representations, J. Functional Analysis 34 (1979), no. 1, 29–53. MR 551108, DOI 10.1016/0022-1236(79)90023-5
- A. W. Knapp, Representations of $\textrm {GL}_{2}(\textbf {R})$ and $\textrm {GL}_{2}(\textbf {C})$, Automorphic forms, representations and $L$-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977) Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I., 1979, pp. 87–91. MR 546590, DOI 10.1090/pspum/033.1/546590
- Anthony W. Knapp, Representation theory of semisimple groups, Princeton Mathematical Series, vol. 36, Princeton University Press, Princeton, NJ, 1986. An overview based on examples. MR 855239, DOI 10.1515/9781400883974
- Anthony W. Knapp, Lie groups, Lie algebras, and cohomology, Mathematical Notes, vol. 34, Princeton University Press, Princeton, NJ, 1988. MR 938524, DOI 10.1515/9780691223803
- A. W. Knapp, Imbedding discrete series in $L^{2}(G/H)$, in “Harmonic analysis on Lie groups (Sandjerg Estate, August 26-30, 1991)," Copenhagen University Mathematics Institute, Report Series 1991, No. 3, pp. 27–29, Copenhagen, 1991.
- A. W. Knapp, Introduction to representations in analytic cohomology, The Penrose transform and analytic cohomology in representation theory (South Hadley, MA, 1992) Contemp. Math., vol. 154, Amer. Math. Soc., Providence, RI, 1993, pp. 1–19. MR 1246374, DOI 10.1090/conm/154/01353
- A. W. Knapp and K. Okamoto, Limits of holomorphic discrete series, J. Functional Analysis 9 (1972), 375–409. MR 0299726, DOI 10.1016/0022-1236(72)90017-1
- Anthony W. Knapp and David A. Vogan Jr., Cohomological induction and unitary representations, Princeton Mathematical Series, vol. 45, Princeton University Press, Princeton, NJ, 1995. MR 1330919, DOI 10.1515/9781400883936
- A. W. Knapp and N. R. Wallach, Correction and addition: “Szegő kernels associated with discrete series” [Invent. Math. 34 (1976), no. 3, 163–200; MR 54 #7704], Invent. Math. 62 (1980/81), no. 2, 341–346. MR 595593, DOI 10.1007/BF01389165
- A. W. Knapp and Gregg J. Zuckerman, Correction: “Classification of irreducible tempered representations of semisimple groups” [Ann. of Math. (2) 116 (1982), no. 2, 389–501; MR 84h:22034ab], Ann. of Math. (2) 119 (1984), no. 3, 639. MR 744867, DOI 10.2307/2007089
- Toshiyuki Kobayashi, Discrete decomposability of the restriction of $A_{\mathfrak {q}}(\lambda )$ with respect to reductive subgroups and its applications, Invent. Math. 117 (1994), no. 2, 181–205. MR 1273263, DOI 10.1007/BF01232239
- Kunihiko Kodaira, Complex manifolds and deformation of complex structures, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 283, Springer-Verlag, New York, 1986. Translated from the Japanese by Kazuo Akao; With an appendix by Daisuke Fujiwara. MR 815922, DOI 10.1007/978-1-4613-8590-5
- Bertram Kostant, Lie algebra cohomology and the generalized Borel-Weil theorem, Ann. of Math. (2) 74 (1961), 329–387. MR 142696, DOI 10.2307/1970237
- R. P. Langlands, On the classification of irreducible representations of real algebraic groups, Representation theory and harmonic analysis on semisimple Lie groups, Math. Surveys Monogr., vol. 31, Amer. Math. Soc., Providence, RI, 1989, pp. 101–170. MR 1011897, DOI 10.1090/surv/031/03
- Hisaichi Midorikawa, Schur orthogonality relations for certain non square integrable representations of real semisimple Lie groups, Tokyo J. Math. 8 (1985), no. 2, 303–336. MR 826991, DOI 10.3836/tjm/1270151217
- John Rawnsley, Wilfried Schmid, and Joseph A. Wolf, Singular unitary representations and indefinite harmonic theory, J. Functional Analysis 51 (1983), no. 1, 1–114. MR 699229, DOI 10.1016/0022-1236(83)90029-0
- Wilfried Schmid, Homogeneous complex manifolds and representations of semisimple Lie groups, Representation theory and harmonic analysis on semisimple Lie groups, Math. Surveys Monogr., vol. 31, Amer. Math. Soc., Providence, RI, 1989, pp. 223–286. Dissertation, University of California, Berkeley, CA, 1967. MR 1011899, DOI 10.1090/surv/031/05
- Wilfried Schmid, $L^{2}$-cohomology and the discrete series, Ann. of Math. (2) 103 (1976), no. 2, 375–394. MR 396856, DOI 10.2307/1970944
- Wilfried Schmid, Boundary value problems for group invariant differential equations, Astérisque Numéro Hors Série (1985), 311–321. The mathematical heritage of Élie Cartan (Lyon, 1984). MR 837206
- Juan A. Tirao and Joseph A. Wolf, Homogeneous holomorphic vector bundles, Indiana Univ. Math. J. 20 (1970/71), 15–31. MR 263110, DOI 10.1512/iumj.1970.20.20002
- David A. Vogan Jr., The algebraic structure of the representation of semisimple Lie groups. I, Ann. of Math. (2) 109 (1979), no. 1, 1–60. MR 519352, DOI 10.2307/1971266
- David A. Vogan, Irreducible characters of semisimple Lie groups. III. Proof of Kazhdan-Lusztig conjecture in the integral case, Invent. Math. 71 (1983), no. 2, 381–417. MR 689650, DOI 10.1007/BF01389104
- D. A. Vogan Jr. and N. R. Wallach, Intertwining operators for real reductive groups, Adv. Math. 82 (1990), no. 2, 203–243. MR 1063958, DOI 10.1016/0001-8708(90)90089-6
- Nolan R. Wallach, Representations of reductive Lie groups, Automorphic forms, representations and $L$-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977) Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I., 1979, pp. 71–86. MR 546589, DOI 10.1090/pspum/033.1/546589
- H. W. Wong, Cohomological induction in various categories and the maximal globalization conjecture, preprint, 1995.
- Roger Zierau, Unitarity of certain Dolbeault cohomology representations, The Penrose transform and analytic cohomology in representation theory (South Hadley, MA, 1992) Contemp. Math., vol. 154, Amer. Math. Soc., Providence, RI, 1993, pp. 239–259. MR 1246388, DOI 10.1090/conm/154/01367
Bibliographic Information
- Robert W. Donley, Jr.
- Affiliation: Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
- Address at time of publication: Department of Mathematics, Oklahoma State University, Stillwater, Oklahoma 74078
- MR Author ID: 625558
- Email: donley@math.mit.edu
- Received by editor(s): February 5, 1998
- Received by editor(s) in revised form: March 31, 1998, and May 13, 1998
- Published electronically: June 16, 1998
- Additional Notes: Supported by NSF Grant DMS 9627447.
- © Copyright 1998 American Mathematical Society
- Journal: Represent. Theory 2 (1998), 278-297
- MSC (1991): Primary 22E46
- DOI: https://doi.org/10.1090/S1088-4165-98-00044-2
- MathSciNet review: 1628039