A generalization of Springer theory using nearby cycles
HTML articles powered by AMS MathViewer
- by Mikhail Grinberg
- Represent. Theory 2 (1998), 410-431
- DOI: https://doi.org/10.1090/S1088-4165-98-00053-3
- Published electronically: December 4, 1998
- PDF | Request permission
Abstract:
Let $\mathfrak g$ be a complex semisimple Lie algebra, and $f : {\mathfrak {g}} \to G \backslash \backslash {\mathfrak {g}}$ the adjoint quotient map. Springer theory of Weyl group representations can be seen as the study of the singularities of $f$. In this paper, we give a generalization of Springer theory to visible, polar representations. It is a class of rational representations of reductive groups over $\mathbb C$, for which the invariant theory works by analogy with the adjoint representations. Let $G | V$ be such a representation, $f : V \to G \backslash \backslash V$ the quotient map, and $P$ the sheaf of nearby cycles of $f$. We show that the Fourier transform of $P$ is an intersection homology sheaf on $V^*$. Associated to $G | V$, there is a finite complex reflection group $W$, called the Weyl group of $G | V$. We describe the endomorphism ring ${\mathrm {End}} (P)$ as a deformation of the group algebra ${\mathbb {C}} [W]$.References
- A. Beĭlinson and J. Bernstein, A proof of Jantzen conjectures, I. M. Gel′fand Seminar, Adv. Soviet Math., vol. 16, Amer. Math. Soc., Providence, RI, 1993, pp. 1–50. MR 1237825, DOI 10.1090/advsov/016.1/01
- A. A. Beĭlinson, J. Bernstein, and P. Deligne, Faisceaux pervers, Analysis and topology on singular spaces, I (Luminy, 1981) Astérisque, vol. 100, Soc. Math. France, Paris, 1982, pp. 5–171 (French). MR 751966
- T. Braden and M. Grinberg, Perverse sheaves on rank stratifications, to appear in the Duke J. Math.
- Walter Borho and Robert MacPherson, Représentations des groupes de Weyl et homologie d’intersection pour les variétés nilpotentes, C. R. Acad. Sci. Paris Sér. I Math. 292 (1981), no. 15, 707–710 (French, with English summary). MR 618892
- Walter Borho and Robert MacPherson, Partial resolutions of nilpotent varieties, Analysis and topology on singular spaces, II, III (Luminy, 1981) Astérisque, vol. 101, Soc. Math. France, Paris, 1983, pp. 23–74. MR 737927
- Jean-Luc Brylinski, Transformations canoniques, dualité projective, théorie de Lefschetz, transformations de Fourier et sommes trigonométriques, Astérisque 140-141 (1986), 3–134, 251 (French, with English summary). Géométrie et analyse microlocales. MR 864073
- Jiri Dadok and Victor Kac, Polar representations, J. Algebra 92 (1985), no. 2, 504–524. MR 778464, DOI 10.1016/0021-8693(85)90136-X
- V. Ginzburg, Intégrales sur les orbites nilpotentes et représentations des groupes de Weyl, C.R. Acad. Sci. Paris 296 (1983), Sèrie I, pp. 249-253.
- M. Grinberg, On the Specialization to the Asymptotic Cone, preprint, math.AG/9805031.
- M. Grinberg, Morse groups in symmetric spaces corresponding to the symmetric group, preprint, math.AG/9802091.
- Mark Goresky and Robert MacPherson, Intersection homology. II, Invent. Math. 72 (1983), no. 1, 77–129. MR 696691, DOI 10.1007/BF01389130
- Mark Goresky and Robert MacPherson, Morse theory and intersection homology theory, Analysis and topology on singular spaces, II, III (Luminy, 1981) Astérisque, vol. 101, Soc. Math. France, Paris, 1983, pp. 135–192. MR 737930
- Mark Goresky and Robert MacPherson, Stratified Morse theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 14, Springer-Verlag, Berlin, 1988. MR 932724, DOI 10.1007/978-3-642-71714-7
- Heisuke Hironaka, Stratification and flatness, Real and complex singularities (Proc. Ninth Nordic Summer School/NAVF Sympos. Math., Oslo, 1976) Sijthoff and Noordhoff, Alphen aan den Rijn, 1977, pp. 199–265. MR 0499286, DOI 10.1007/978-94-010-1289-8_{8}
- R. Hotta and M. Kashiwara, The invariant holonomic system on a semisimple Lie algebra, Invent. Math. 75 (1984), no. 2, 327–358. MR 732550, DOI 10.1007/BF01388568
- Ryoshi Hotta, On Springer’s representations, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28 (1981), no. 3, 863–876 (1982). MR 656061
- V. G. Kac, Some remarks on nilpotent orbits, J. Algebra 64 (1980), no. 1, 190–213. MR 575790, DOI 10.1016/0021-8693(80)90141-6
- David Kazhdan and George Lusztig, A topological approach to Springer’s representations, Adv. in Math. 38 (1980), no. 2, 222–228. MR 597198, DOI 10.1016/0001-8708(80)90005-5
- George Kempf and Linda Ness, The length of vectors in representation spaces, Algebraic geometry (Proc. Summer Meeting, Univ. Copenhagen, Copenhagen, 1978) Lecture Notes in Math., vol. 732, Springer, Berlin, 1979, pp. 233–243. MR 555701, DOI 10.1007/BFb0066647
- B. Kostant and S. Rallis, Orbits and representations associated with symmetric spaces, Amer. J. Math. 93 (1971), 753–809. MR 311837, DOI 10.2307/2373470
- Masaki Kashiwara and Pierre Schapira, Sheaves on manifolds, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 292, Springer-Verlag, Berlin, 1994. With a chapter in French by Christian Houzel; Corrected reprint of the 1990 original. MR 1299726, DOI 10.1007/978-3-662-02661-8
- Lê Dũng Tráng, Some remarks on relative monodromy, Real and complex singularities (Proc. Ninth Nordic Summer School/NAVF Sympos. Math., Oslo, 1976) Sijthoff and Noordhoff, Alphen aan den Rijn, 1977, pp. 397–403. MR 0476739, DOI 10.1007/978-94-010-1289-8_{1}1
- Lê Dũng Tráng, The geometry of the monodromy theorem, C. P. Ramanujam—a tribute, Tata Inst. Fund. Res. Studies in Math., vol. 8, Springer, Berlin-New York, 1978, pp. 157–173. MR 541020
- G. Lusztig, Green polynomials and singularities of unipotent classes, Adv. in Math. 42 (1981), no. 2, 169–178. MR 641425, DOI 10.1016/0001-8708(81)90038-4
- G. Lusztig, Left cells in Weyl groups, Lie group representations, I (College Park, Md., 1982/1983) Lecture Notes in Math., vol. 1024, Springer, Berlin, 1983, pp. 99–111. MR 727851, DOI 10.1007/BFb0071433
- Robert MacPherson, Global questions in the topology of singular spaces, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Warsaw, 1983) PWN, Warsaw, 1984, pp. 213–235. MR 804683
- John Milnor, Singular points of complex hypersurfaces, Annals of Mathematics Studies, No. 61, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1968. MR 0239612, DOI 10.1515/9781400881819
- È. B. Vinberg (ed.), Lie groups and Lie algebras, III, Encyclopaedia of Mathematical Sciences, vol. 41, Springer-Verlag, Berlin, 1994. Structure of Lie groups and Lie algebras; A translation of Current problems in mathematics. Fundamental directions. Vol. 41 (Russian), Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1990 [ MR1056485 (91b:22001)]; Translation by V. Minachin [V. V. Minakhin]; Translation edited by A. L. Onishchik and È. B. Vinberg. MR 1349140, DOI 10.1007/978-3-662-03066-0
- T. A. Springer, Trigonometric sums, Green functions of finite groups and representations of Weyl groups, Invent. Math. 36 (1976), 173–207. MR 442103, DOI 10.1007/BF01390009
- T. A. Springer, A construction of representations of Weyl groups, Invent. Math. 44 (1978), no. 3, 279–293. MR 491988, DOI 10.1007/BF01403165
- Jean-Luc Brylinski, (Co)-homologie d’intersection et faisceaux pervers, Bourbaki Seminar, Vol. 1981/1982, Astérisque, vol. 92, Soc. Math. France, Paris, 1982, pp. 129–157 (French). MR 689529
- Peter Slodowy, Simple singularities and simple algebraic groups, Lecture Notes in Mathematics, vol. 815, Springer, Berlin, 1980. MR 584445, DOI 10.1007/BFb0090294
- Sam Perlis, Maximal orders in rational cyclic algebras of composite degree, Trans. Amer. Math. Soc. 46 (1939), 82–96. MR 15, DOI 10.1090/S0002-9947-1939-0000015-X
Bibliographic Information
- Mikhail Grinberg
- Affiliation: Department of Mathematics, Massachusetts Institute of Technology, 77 Massachu- setts Ave., Room 2-247, Cambridge, Massachusetts 02139
- Email: grinberg@math.mit.edu
- Received by editor(s): May 21, 1998
- Received by editor(s) in revised form: October 10, 1998
- Published electronically: December 4, 1998
- © Copyright 1998 American Mathematical Society
- Journal: Represent. Theory 2 (1998), 410-431
- MSC (1991): Primary 14D05, 22E46
- DOI: https://doi.org/10.1090/S1088-4165-98-00053-3
- MathSciNet review: 1657203