## Character formulas for tilting modules over Kac-Moody algebras

HTML articles powered by AMS MathViewer

- by Wolfgang Soergel
- Represent. Theory
**2**(1998), 432-448 - DOI: https://doi.org/10.1090/S1088-4165-98-00057-0
- Published electronically: December 28, 1998

Original Article: Represent. Theory 1 (1997)

## Abstract:

We show how to express the characters of tilting modules in a (possibly parabolic) category $\mathcal {O}$ over a Kac-Moody algebra in terms of the characters of simple highest weight modules. This settles, in lots of cases, Conjecture 7.2 of*Kazhdan-Lusztig-Polynome and eine Kombinatorik für Kipp-Moduln*, Representation Theory (An electronic Journal of the AMS) (1997), by the author, describing the character of tilting modules for quantum groups at roots of unity.

## References

- M. F. Atiyah and I. G. Macdonald,
*Introduction to commutative algebra*, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1969. MR**0242802** - S. M. Arkhipov,
*Semi-infinite cohomology of associative algebras and bar duality*, Internat. Math. Res. Notices**17**(1997), 833–863. MR**1474841**, DOI 10.1155/S1073792897000548 - I. N. Bernšteĭn, I. M. Gel′fand, and S. I. Gel′fand,
*Differential operators on the base affine space and a study of ${\mathfrak {g}}$-modules*, Lie groups and their representations (Proc. Summer School, Bolyai János Math. Soc., Budapest, 1971) Halsted, New York, 1975, pp. 21–64. MR**0578996** - David H. Collingwood and Ronald S. Irving,
*A decomposition theorem for certain self-dual modules in the category ${\scr O}$*, Duke Math. J.**58**(1989), no. 1, 89–102. MR**1016415**, DOI 10.1215/S0012-7094-89-05806-7 - Vinay V. Deodhar,
*On some geometric aspects of Bruhat orderings. II. The parabolic analogue of Kazhdan-Lusztig polynomials*, J. Algebra**111**(1987), no. 2, 483–506. MR**916182**, DOI 10.1016/0021-8693(87)90232-8 - Vinay V. Deodhar, Ofer Gabber, and Victor Kac,
*Structure of some categories of representations of infinite-dimensional Lie algebras*, Adv. in Math.**45**(1982), no. 1, 92–116. MR**663417**, DOI 10.1016/S0001-8708(82)80014-5 - S. Donkin,
*Finite resolutions of modules for reductive algebraic groups*, J. Algebra**101**(1986), no. 2, 473–488. MR**847172**, DOI 10.1016/0021-8693(86)90206-1 - Peter John Hilton and Urs Stammbach,
*A course in homological algebra*, Graduate Texts in Mathematics, Vol. 4, Springer-Verlag, New York-Berlin, 1971. MR**0346025**, DOI 10.1007/978-1-4684-9936-0 - Victor G. Kac,
*Infinite-dimensional Lie algebras*, 3rd ed., Cambridge University Press, Cambridge, 1990. MR**1104219**, DOI 10.1017/CBO9780511626234 - Masaki Kashiwara,
*Kazhdan-Lusztig conjecture for a symmetrizable Kac-Moody Lie algebra*, The Grothendieck Festschrift, Vol. II, Progr. Math., vol. 87, Birkhäuser Boston, Boston, MA, 1990, pp. 407–433. MR**1106905**, DOI 10.1007/978-0-8176-4575-5_{1}0 - D. Kazhdan and G. Lusztig,
*Tensor structures arising from affine Lie algebras. I, II*, J. Amer. Math. Soc.**6**(1993), no. 4, 905–947, 949–1011. MR**1186962**, DOI 10.1090/S0894-0347-1993-99999-X - D. Kazhdan and G. Lusztig,
*Tensor structures arising from affine Lie algebras. III*, J. Amer. Math. Soc.**7**(1994), no. 2, 335–381. MR**1239506**, DOI 10.1090/S0894-0347-1994-1239506-X - Patrick Polo,
*Projective versus injective modules over graded Lie algebras and a particular parabolic category $\mathcal {O}$ for affine Kac-Moody algebras*, Preprint, 1991. - Olga Taussky,
*An algebraic property of Laplace’s differential equation*, Quart. J. Math. Oxford Ser.**10**(1939), 99–103. MR**83**, DOI 10.1093/qmath/os-10.1.99 - Claus Michael Ringel,
*The category of modules with good filtrations over a quasi-hereditary algebra has almost split sequences*, Math. Z.**208**(1991), no. 2, 209–223. MR**1128706**, DOI 10.1007/BF02571521 - Wolfgang Soergel,
*Kazhdan-Lusztig-Polynome and eine Kombinatorik für Kipp-Moduln*, Representation Theory (An electronic Journal of the AMS) (1997). - Alexander A. Voronov,
*Semi-infinite homological algebra*, Invent. Math.**113**(1993), no. 1, 103–146. MR**1223226**, DOI 10.1007/BF01244304

## Bibliographic Information

**Wolfgang Soergel**- Affiliation: Universität Freiburg, Mathematisches Institut, Eckerstrasse 1, D-79104 Freiburg, Germany
- Email: soergel@mathematik.uni-freiburg.de
- Received by editor(s): September 10, 1998
- Published electronically: December 28, 1998
- © Copyright 1998 by the author
- Journal: Represent. Theory
**2**(1998), 432-448 - MSC (1991): Primary 17B70, 17B67, 17B37
- DOI: https://doi.org/10.1090/S1088-4165-98-00057-0
- MathSciNet review: 1663141