Quaternionic discrete series
HTML articles powered by AMS MathViewer
- by Derek Gordon
- Represent. Theory 3 (1999), 32-57
- DOI: https://doi.org/10.1090/S1088-4165-99-00045-X
- Published electronically: June 2, 1999
- PDF | Request permission
Abstract:
This work investigates the discrete series of linear connected semi- simple noncompact groups $G$. These are irreducible unitary representations that occur as direct summands of $L^{2}(G)$. Harish-Chandra produced discrete series representations, now called holomorphic discrete series representations, for groups $G$ with the property that, if $K$ is a maximal compact subgroup, then $G/K$ has a complex structure such that $G$ acts holomorphically. Holomorphic discrete series are extraordinarily explicit, it being possible to determine all the elements in the space and the action by the Lie algebra of $G$. Later Harish-Chandra parametrized the discrete series in general. His argument did not give an actual realization of the representations, but later authors found realizations in spaces defined by homology or cohomology. These realizations have the property that it is not apparent what elements are in the space and what the action of the Lie algebra $G$ is. The point of this work is to find some intermediate ground between the holomorphic discrete series and the general discrete series, so that the intermediate cases may be used to get nontrivial insights into the internal structure of the discrete series in the general case. The author examines the Vogan-Zuckerman realization of discrete series by means of cohomological induction. An explicit complex for computing the homology on the level of a $K$ module was already known. Also, Duflo and Vergne had given information about how to compute the action of the Lie algebra of $G$. The holomorphic discrete series are exactly those cases where the representations can be realized in homology of degree 0. The intermediate cases that are studied are those where the representation can be realized in homology of degree 1. Many of the intermediate cases correspond to the situation where $G/K$ has a quaternionic structure. The author obtains general results for ${\text {A}_{\mathfrak {q}}(\lambda )}$ discrete series in the intermediate case.References
- Garrett Birkhoff and Morgan Ward, A characterization of Boolean algebras, Ann. of Math. (2) 40 (1939), 609–610. MR 9, DOI 10.2307/1968945
- Arthur L. Besse, Einstein manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 10, Springer-Verlag, Berlin, 1987. MR 867684, DOI 10.1007/978-3-540-74311-8
- M. W. Baldoni Silva and A. W. Knapp, Intertwining operators and unitary representations. I, J. Funct. Anal. 82 (1989), no. 1, 151–236. MR 976317, DOI 10.1016/0022-1236(89)90096-7
- P. Erdös and T. Grünwald, On polynomials with only real roots, Ann. of Math. (2) 40 (1939), 537–548. MR 7, DOI 10.2307/1968938
- J. Dixmier, Dual et quasi-dual d’une algèbre de Banach involutive, Trans. Amer. Math. Soc. 104 (1962), 278–283 (French). MR 139960, DOI 10.1090/S0002-9947-1962-0139960-6
- Michel Duflo and Michèle Vergne, Sur le foncteur de Zuckerman, C. R. Acad. Sci. Paris Sér. I Math. 304 (1987), no. 16, 467–469 (French, with English summary). MR 894570
- T. J. Enright, R. Parthasarathy, N. R. Wallach, and J. A. Wolf, Classes of unitarizable derived functor modules, Proc. Nat. Acad. Sci. USA 80 (1983), 7047–7050.
- T. J. Enright, R. Parthasarathy, N. R. Wallach, and J. A. Wolf, Unitary derived functor modules with small spectrum, Acta Math. 154 (1985), no. 1-2, 105–136. MR 772433, DOI 10.1007/BF02392820
- Thomas J. Enright and V. S. Varadarajan, On an infinitesimal characterization of the discrete series, Ann. of Math. (2) 102 (1975), no. 1, 1–15. MR 476921, DOI 10.2307/1970970
- R. Fueter, Die Funktionentheorie der Differentialgleichungen $\Delta u=0$ und $\Delta \Delta u=0$ mit vier reelen Variablen, Comment. Math. Helv. 7 (1935), 307–330.
- R. Fueter, Über die analytische Darstellung der regulären Funktionen einer Quaternionenvariablen, Comment. Math. Helv. 8 (1936), 371–378.
- R. Fueter, Die Singularitäten der eindeutigen regulären Funktionen einer Quaternionenvariablen, Comment. Math. Helv. 9 (1937), 320–335.
- Mogens Flensted-Jensen, Spherical functions of a real semisimple Lie group. A method of reduction to the complex case, J. Functional Analysis 30 (1978), no. 1, 106–146. MR 513481, DOI 10.1016/0022-1236(78)90058-7
- Mogens Flensted-Jensen, Discrete series for semisimple symmetric spaces, Ann. of Math. (2) 111 (1980), no. 2, 253–311. MR 569073, DOI 10.2307/1971201
- D. Gordon, Quaternionic Discrete Series of Semisimple Lie Groups, Ph.D. Thesis, State University of New York, Stony Brook, 1995.
- Saunders MacLane, Steinitz field towers for modular fields, Trans. Amer. Math. Soc. 46 (1939), 23–45. MR 17, DOI 10.1090/S0002-9947-1939-0000017-3
- Cahit Arf, Untersuchungen über reinverzweigte Erweiterungen diskret bewerteter perfekter Körper, J. Reine Angew. Math. 181 (1939), 1–44 (German). MR 18, DOI 10.1515/crll.1940.181.1
- Cahit Arf, Untersuchungen über reinverzweigte Erweiterungen diskret bewerteter perfekter Körper, J. Reine Angew. Math. 181 (1939), 1–44 (German). MR 18, DOI 10.1515/crll.1940.181.1
- Harish-Chandra, Discrete series for semisimple Lie groups. II. Explicit determination of the characters, Acta Math. 116 (1966), 1–111. MR 219666, DOI 10.1007/BF02392813
- Sigurdur Helgason, Differential geometry, Lie groups, and symmetric spaces, Pure and Applied Mathematics, vol. 80, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1978. MR 514561
- Kenneth Hoffman and Ray Kunze, Linear algebra, 2nd ed., Prentice-Hall, Inc., Englewood Cliffs, N.J., 1971. MR 0276251
- R. Hotta and R. Parthasarathy, Multiplicity formulae for discrete series, Invent. Math. 26 (1974), 133–178. MR 348041, DOI 10.1007/BF01435692
- James E. Humphreys, Introduction to Lie algebras and representation theory, Graduate Texts in Mathematics, Vol. 9, Springer-Verlag, New York-Berlin, 1972. MR 0323842, DOI 10.1007/978-1-4612-6398-2
- A. W. Knapp, Introduction to representations in analytic cohomology, The Penrose transform and analytic cohomology in representation theory (South Hadley, MA, 1992) Contemp. Math., vol. 154, Amer. Math. Soc., Providence, RI, 1993, pp. 1–19. MR 1246374, DOI 10.1090/conm/154/01353
- Anthony W. Knapp, Lie groups, Lie algebras, and cohomology, Mathematical Notes, vol. 34, Princeton University Press, Princeton, NJ, 1988. MR 938524, DOI 10.1515/9780691223803
- Anthony W. Knapp, Representation theory of semisimple groups, Princeton Mathematical Series, vol. 36, Princeton University Press, Princeton, NJ, 1986. An overview based on examples. MR 855239, DOI 10.1515/9781400883974
- A. W. Knapp, Bounded symmetric domains and holomorphic discrete series, Symmetric spaces (Short Courses, Washington Univ., St. Louis, Mo., 1969–1970), Pure and Appl. Math., Vol. 8, Dekker, New York, 1972, pp. 211–246. MR 0460544
- Anthony W. Knapp and David A. Vogan Jr., Cohomological induction and unitary representations, Princeton Mathematical Series, vol. 45, Princeton University Press, Princeton, NJ, 1995. MR 1330919, DOI 10.1515/9781400883936
- A. W. Knapp and N. R. Wallach, Correction and addition: “Szegő kernels associated with discrete series” [Invent. Math. 34 (1976), no. 3, 163–200; MR 54 #7704], Invent. Math. 62 (1980/81), no. 2, 341–346. MR 595593, DOI 10.1007/BF01389165
- R. P. Langlands, Dimension of spaces of automorphic forms, Algebraic Groups and Discontinuous Subgroups (Proc. Sympos. Pure Math., Boulder, Colo., 1965) Amer. Math. Soc., Providence, R.I., 1966, pp. 253–257. MR 0212135, DOI 10.1090/pspum/009/0212135
- Walter Rudin, Functional analysis, 2nd ed., International Series in Pure and Applied Mathematics, McGraw-Hill, Inc., New York, 1991. MR 1157815
- Wilfried Schmid, Homogeneous complex manifolds and representations of semisimple Lie groups, Representation theory and harmonic analysis on semisimple Lie groups, Math. Surveys Monogr., vol. 31, Amer. Math. Soc., Providence, RI, 1989, pp. 223–286. Dissertation, University of California, Berkeley, CA, 1967. MR 1011899, DOI 10.1090/surv/031/05
- Wilfried Schmid, On the realization of the discrete series of a semisimple Lie group, Rice Univ. Stud. 56 (1970), no. 2, 99–108 (1971). MR 277668
- Wilfried Schmid, $L^{2}$-cohomology and the discrete series, Ann. of Math. (2) 103 (1976), no. 2, 375–394. MR 396856, DOI 10.2307/1970944
- A. Sudbery, Quaternionic analysis, Math. Proc. Cambridge Philos. Soc. 85 (1979), no. 2, 199–224. MR 516081, DOI 10.1017/S0305004100055638
- Reiji Takahashi, Sur les représentations unitaires des groupes de Lorentz généralisés, Bull. Soc. Math. France 91 (1963), 289–433 (French). MR 179296, DOI 10.24033/bsmf.1598
- David A. Vogan Jr., Representations of real reductive Lie groups, Progress in Mathematics, vol. 15, Birkhäuser, Boston, Mass., 1981. MR 632407
- Joseph A. Wolf, Complex homogeneous contact manifolds and quaternionic symmetric spaces, J. Math. Mech. 14 (1965), 1033–1047. MR 0185554
- G. L. Zuckerman, Lecture Series, “Construction of representations via derived functors”, Institute for Advanced Study, Princeton, N.J., Jan.–Mar. 1978.
Bibliographic Information
- Derek Gordon
- Affiliation: Laboratory of Statistical Genetics, Rockefeller University, 1230 York Avenue, New York, New York 10021
- Email: gordon@morgan.rockefeller.edu
- Received by editor(s): February 19, 1998
- Received by editor(s) in revised form: November 18, 1998
- Published electronically: June 2, 1999
- © Copyright 1999 American Mathematical Society
- Journal: Represent. Theory 3 (1999), 32-57
- MSC (1991): Primary 22E46
- DOI: https://doi.org/10.1090/S1088-4165-99-00045-X
- MathSciNet review: 1694200