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SQUARE INTEGRABLE REPRESENTATIONS OF CLASSICAL
p-ADIC GROUPS CORRESPONDING TO SEGMENTS

MARKO TADIĆ

Abstract. Let Sn be either the group Sp(n) or SO(2n+1) over a p-adic field
F . Then Levi factors of maximal parabolic subgroups are (isomorphic to) di-
rect products of GL(k) and Sn−k , with 1 ≤ k ≤ n. The square integrable rep-
resentations which we define and study in this paper (and prove their square in-

tegrability), are subquotients of reducible representations IndSn
P (δ⊗σ), where

δ is an essentially square integrable representation of GL(k), and σ is a cusp-
idal representation of Sn−k. These square integrable representations play an
important role in a construction of more general square integrable representa-
tions.

Introduction

The problem of classification of noncuspidal irreducible square integrable repre-
sentations of a reductive group G over a p-adic field F , is equivalent to the problem
of classification of irreducible square integrable subquotients of the representations
parabolically induced from irreducible cuspidal representations of proper Levi sub-
groups. We shall denote the classical group Sp(n, F ) or SO(2n + 1, F ) by Sn, and
we shall fix one of these series of groups (we shall assume char(F ) 6= 2). Since the
Levi factors of the maximal parabolic subgroups of Sn are naturally isomorphic to
GL(k, F )× Sn−k, we shall denote by π o σ the representation of Sn parabolically
induced from π ⊗ σ (π and σ are admissible representations of GL(k, F ) and Sn−k

respectively; the precise definition of o can be found in Section 1). This definition is
a natural generalization of the multiplication × between representations of general
linear groups introduced by J. Bernstein and A.V. Zelevinsky. Using this notation,
we can say that for the classification of noncuspidal irreducible square integrable
representations of the groups Sn, one needs to classify such subquotients of

ρ1 × ρ2 × · · · × ρm o σ,

where ρi are irreducible cuspidal representations of general linear groups, and σ is
a similar representation of some Sk.

For the first case of m = 1, one only needs to know the reducibility of ρ o σ
(such reducibility will be called the cuspidal or generalized rank one reducibility).
Let us recall that each irreducible essentially square integrable representation δ of
a general linear group can be written as |det|e(δ)F δu, where e(δ) ∈ R and δu is a
unitarizable representation (| |F is the modulus character of F ). Now look at the
simplest example in the case of m = 1, when ρ is a character and σ is trivial. Then,
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it is well known from the representation theory of SL(2, F ) and SO(3, F ), that in
the case of reducibility we have

e(ρ) ∈ {0,±1/2,±1}.
F. Shahidi has proved that this is the case in general, if σ is generic ([Sh1]). In gen-
eral, cuspidal reducibility in {0,±1/2,±1} will be called generic or nonexceptional
reducibility. Otherwise, we shall say that we have an exceptional or nongeneric
reducibility. The existence of exceptional reducibilities was proved recently by
M. Reeder and by C. Mœglin. One can expect that any cuspidal reducibility al-
ways lies in (1/2) Z (Conjecture 9.4 of [Sh1] implies this).

The square integrable representations which we define in this paper (and prove
their square integrability) are subquotients of reducible representations δoσ, where
δ is an essentially square integrable representation of a general linear group, and σ
is a cuspidal representation of some Sk. This construction is a part of a wider strat-
egy of construction of noncuspidal irreducible square integrable representations of
the groups Sn. Before we describe briefly this strategy, we shall introduce some
notation. Denote |det|F by ν. A segment in irreducible cuspidal representations
of general linear groups is a set ∆ = {ρ, νρ, . . . , νkρ}, where ρ is an irreducible
cuspidal representation attached to a general linear group. Let ∆̃ = {π̃; π ∈ ∆},
where π̃ denotes the contragredient representation of π. For such a segment ∆,
the representation νkρ × νk−1ρ× · · · × νρ × ρ has a unique irreducible essentially
square integrable subquotient (it is a unique irreducible subrepresentation), which
we denote by δ(∆). The first part of our strategy of construction of noncuspidal
irreducible square integrable representations of the groups Sn is to consider seg-
ments ∆ of irreducible cuspidal representations of general linear groups satisfying
that δ(∆) o σ reduces and, if ∆ ∩ ∆̃ 6= ∅, then δ(∆ ∩ ∆̃) o σ also reduces. Then
to each such segment, one attaches irreducible square integrable representations
(closely related to it). In the case when ∆∩ ∆̃ = ∅, we have in [T4] such a segment
attached to an irreducible square integrable representation (the simplest example
of such representations are the Steinberg representations).

In this paper we attach two irreducible square integrable representations to each
segment as above, for which ∆∩∆̃ 6= ∅. The construction in this case is significantly
more complicated than in the case ∆ ∩ ∆̃ = ∅, since in this case we need to work
with highly nonregular representations.

The second step in our strategy would be attaching to a sequences of segments as
above (satisfying certain additional conditions among them) families of irreducible
square integrable representations, using the above square integrable representations
attached to single segments. Such a type of construction can be found in [T6].
G. Muić has shown in [Mi2] that the family constructed in [T6] contains all the
generic irreducible square integrable representations of the groups Sn (they make
a relatively small part of the whole family).

In other words, we expect that the representations that we construct in this
paper are part of basic building blocks of general square integrable representations
of the groups Sn.

Now we shall describe the main result of the paper.

Theorem. Let ρ and σ be irreducible unitarizable cuspidal representations of
GL(p, F ) and Sq respectively, such that there exists α ∈ (1/2) Z, α ≥ 0 satisfy-
ing that ναρoσ reduces and νβρoσ is irreducible for β ∈ (α+Z)\{±α}. Let ∆ be
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a segment in cuspidal representations of general linear groups such that e(δ(∆)) > 0
and ναρ ∈ ∆ ∩ ∆̃. Then:

(i) The representation δ(∆) o σ has exactly two irreducible subrepresentations.
They are square integrable and each of them has multiplicity one in δ(∆)oσ.

(ii) The representation δ(∆∩ ∆̃) o σ reduces into a sum of two inequivalent irre-
ducible tempered subrepresentations τ1 and τ2. The representation δ(∆\∆̃)oτi

has a unique irreducible subrepresentation, which we denote by δ(∆, σ)τi .
The representations δ(∆, σ)τi , i = 1, 2 are irreducible subrepresentations of
δ(∆) o σ.

Suppose char(F ) = 0 and that Conjecture 9.4 of [Sh1] holds. Then the as-
sumption of the theorem on ∆ and σ has the very simple form: e(δ(∆)) > 0 and
δ(∆ ∩ ∆̃) o σ reduces (which implies that δ(∆) o σ reduces).

Our methods in this paper are based on techniques of Jacquet modules, the
structure related to them ([T3]) and systematic use of the Bernstein-Zelevinsky
theory ([Z]). In this paper, besides the proof of the square integrability of the
representations δ(∆, σ)τ , we get also, rather explicit information about some of
their Jacquet models (see Theorems 4.5, 4.7 and 5.5; for tempered representations
see Theorems 2.3 and 2.5). The paper would be considerably shorter, if we restricted
ourselves to the proof of the square integrability only. The heart of the paper is
the second, third and fourth sections. Section 5 is included, because in the case
of unitary reducibility, some technical modifications are necessary (although this
section follows the ideas of Section 4).

Now we shall describe the content of the sections. In Section 1 we introduce the
notation and recall of some results that we shall need in the remaining sections.
Section 2 studies the tempered representations which are crucial for our approach to
the square integrable representations. In Section 3 we define the square integrable
representations δ(∆, σ)τ and observe some of their basic properties. In Sections 4
and 5 we prove their square integrability. Section 6 describes an example which
shows that, besides the reducibility of δ(∆) o σ, the reducibility of δ(∆∩ ∆̃) o σ is
also important for appearance of square integrable representations (this assumption
also seems to be natural from the point of the conjectural local Langlands’ corre-
spondence). In Section 7, we write a proof of a simple fact from the representation
theory of general linear groups, for which we did not know a reference.

Let us note that several years ago we had a proof of the above theorem in the case
of generic reducibility at 0, 1/2 and 1 (at that time, we did not have any evidence
that nongeneric reducibilities can actually show up). Technical details of the proofs
in that approach were very much dependent on the specific value of reducibility
(although the ideas of the proofs were the same). Our present approach, which
covers reducibilities α ∈ (1/2)Z, α ≥ 0, is almost independent of the value of the
reducibility (only the reducibility at 0 requires some separate attention).

We want to thank the referee for a number of useful suggestions and corrections.

1. Notation

In this paper, we fix a p-adic field F , char(F ) 6= 2. For a reductive group G over
F , there is a natural map from the smooth representations of finite length into the
Grothendieck group R(G) of the category of all smooth representations of G of finite
length. This map will be denoted by s.s. and called semisimplification. Further,
there is a natural partial order ≤ on R(G) (the cone {ϕ ∈ R(G); ϕ ≥ 0} consists of
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the semisimplifications of all smooth representations of G of finite length). Denote
by G̃ the set of equivalence classes of all irreducible smooth representations of G.
The group R(G) can be identified with the free Z-module which has G̃ for a basis
(in this way, we shall consider G̃ ⊆ R(G)). Then for ϕ =

∑
π∈G̃ nππ ∈ R(G), ϕ ≥ 0

if and only if nπ ≥ 0 for all π ∈ G̃. For two finite length representations π1 and
π2 of G, π1 ≤ π2 will denote s.s.(π1) ≤ s.s.(π2) (i.e., the inequality between their
semi simplifications). The inequality π1 ≤ π2 is equivalent to the fact that for each
irreducible smooth representation τ of G the multiplicity of τ in π1 is less than or
equal to the multiplicity of τ in π2. Note that the functors of parabolic induction
and the Jacquet functors respect these orders.

For a family of reductive groups Gi, the natural orders on R(Gi) induce a natural
order on the sum

⊕
i R(Gi), which we shall denote by ≤ again. Let ϕ ∈⊕i R(Gi),

let τ be an irreducible smooth representation of some Gi and let k ∈ Z. Suppose
ϕ ≥ 0. We shall say that the multiplicity of τ in ϕ is k if k τ ≤ ϕ and (k +1) τ 6≤ ϕ
(then k ≥ 0).

In this paper, for a reductive group G we shall always fix the minimal para-
bolic subgroup P∅ = M∅N∅ consisting of all upper triangular matrices in G (these
subgroups will be minimal parabolic subgroups for the groups considered in this
paper). The standard parabolic subgroups will be those which contain P∅.

Now we shall recall the notation for general linear groups. For a partition
α = (n1, . . . , nk) of n, we denote by MGL

α = {q-diag(g1, . . . , gk); gi ∈ GL(ni, F )},
and PGL

α = MGL
α NGL

∅ , where NGL
∅ denotes the subgroup of all upper triangular

unipotent representations in GL(n, F ) and q-diag(g1, . . . , gk) denotes a quasidiag-
onal matrix having matrices g1, . . . , gk on the quasidiagonal.

For admissible representations π1 and π2 of GL(n1, F ) and GL(n2, F ) respec-
tively, one can consider π1 ⊗ π2 as a representation of GL(n1, F ) × GL(n2, F ) ∼=
M(n1,n2), and defines π1 × π2 = IndGL(n1+n2,F )

P(n1,n2)
(π1 ⊗ π2). Let Rn = R(GL(n, F ))

and R =
⊕

n≥0 Rn. The above operation × between representations, lifts in a
natural way to a mapping × : Rn1 ×Rn2 → Rn1+n2 , and further to × : R×R → R
(for details see [Z]). In this way, R becomes a graded ring. Let m, s : R × R → R
be maps defined by m(

∑
i xi⊗yi) =

∑
i xi×yi and s(

∑
i xi⊗yi) =

∑
i yi⊗xi. The

additive map of R which sends irreducible representations to its contragredients
will be denoted by ∼: R → R.

For an irreducible admissible representation π of GL(n, F ), denote by m∗(π)
the sum of semisimplifications of normalized Jacquet modules of π with respect to
parabolic subgroups P GL

(k,n−k), k ∈ {0, 1, . . . , n}. Then one can consider m∗(π) as
an element of R ⊗ R. Lifting m∗ to an additive map m∗ : R → R ⊗ R, one gets a
structure of a graded Hopf algebra on R.

Let ν = |det|F : GL(n, F ) → R×, where | |F denotes the modulus charac-
ter of F . Each irreducible essentially square integrable representation δ of a gen-
eral linear group can be written δ = νe(δ)δu, where e(δ) ∈ R and δu is unitariz-
able. For an irreducible cuspidal representation of a general linear group, the set
[ρ, νmρ] = {ρ, νρ, . . . , νmρ} is called a segment in irreducible cuspidal representa-
tions of general linear groups. The representation νmρ × νm−1ρ × · · · × νρ × ρ
contains a unique irreducible subrepresentation which we denote by δ([ρ, νmρ]).
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This subrepresentation is essentially square integrable and

m∗ (δ([ρ, νmρ])) =
m∑

k=−1

δ([νk+1ρ, νmρ])⊗ δ([ρ, νkρ]).(1-1)

Here (and also in the sequel), we shall take [νkρ, νk′ρ] = ∅ if k > k′, while δ(∅) will
denote the identity of R.

For a sequence δ1, . . . , δk of irreducible essentially square integrable represen-
tations of general linear groups, take a permutation p of {1, . . . , k} such that
e(δp(1)) ≥ (δp(2)) ≥ · · · ≥ e(δp(k)). Then the representation δp(1)× δp(2)× · · ·× δp(k)

has a unique irreducible quotient, which we shall denote by L(δ1, . . . , δk). We shall
consider a partial order ≤ defined in 7.1 of [Z] on the set of all finite multisets of
segments in irreducible cuspidal representations of general linear groups. This par-
tial order satisfies that L(δ(∆′

1), . . . , δ(∆
′
k′ )) is a subquotient of δ(∆1)×· · ·×δ(∆k)

if and only if we have for the multisets (∆′
1, . . . , ∆

′
k′ ) ≤ (∆1, . . . , ∆k) (see [T1] for

example). If (∆′
1, . . . , ∆′

k′) is minimal or maximal among all multisets which sat-
isfy (∆′

1, . . . , ∆
′
k′ ) ≤ (∆1, . . . , ∆k), then the multiplicity of L(δ(∆′

1), . . . , δ(∆
′
k′ )) in

δ(∆1) × · · · × δ(∆k) is one (Proposition 3.5 of [T1] implies the multiplicity one if
(∆′

1, . . . , ∆′
k′) is minimal; if it is maximal, then this is a well known property of the

Langlands’ classification).
Let Jn = (δi,n+1−j)1≤i,j≤n be an n × n matrix, where δi,n+1−j denotes the

Kronecker symbol. For a square matrix g, we shall denote by tg the transposed
matrix of g, and by τg the transposed matrix with respect to the second diagonal.
We fix one of the series of classical groups

Sp(n, F ) =
{

g ∈ GL(2n, F );
[

0 −Jn

Jn 0

]
tS

[
0 Jn

−Jn 0

]
= S−1

}
,

SO(2n + 1, F ) = {g ∈ GL(2n + 1, F ); τS = S−1},
and denote by Sn the above group belonging to the series that we have fixed. For
a partition α = (n1, . . . , nk) of m ≤ n, let

α′ = (n1, n2, . . . , nk, n′ − 2m, nk, nk−1, . . . , n1),

where n′ = 2n (resp. 2n + 1) if Sn = Sp(n, F ) (resp. SO(2n + 1, F )). De-
note Pα = Sn ∩ PGL

α′ , Mα = Sn ∩MGL
α′ . Using the isomorphism (g1, . . . , gk, h) 7→

q-diag(g1, . . . , gk, h, τg−1
k , . . . ,τ g−1

1 ), we shall identify GL(n1, F )×· · ·×GL(nk, F )×
Sn−m and Mα. Therefore, each irreducible representation τ of Mα can be viewed
as a tensor product π1 ⊗ · · · ⊗ πk ⊗ σ, where all πi are irreducible representations
of GL(ni, F ) and σ is an irreducible representation of Sn−m. Conversely, for ir-
reducible representations πi of GL(ni, F ) and an irreducible representation σ of
Sn−m, π1 ⊗ · · · ⊗ πk ⊗ σ can be considered as an irreducible representation of Mα.

For admissible representations π and σ of GL(k, F ) and Sn−k respectively, we
consider π ⊗ σ as a representation of M(k), and define

π o σ = IndSn

P(k)
(π ⊗ σ).

If π′ is additionally an admissible representation of a general linear group, then

π′ o (π o σ) ∼= (π′ × π) o σ.(1-2)

Let Rn(S) = R(Sn) and R(S) =
⊕

n≥0 Rn(S). Then o lifts in a natural way to
o : R × R(S) → R(S), and R(S) becomes graded R-module (note that R ⊗ R(S)
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is in a natural way an R ⊗ R-module; we denote this action by o again). In the
R-module R(S) the equality

π o σ = π̃ o σ (π ∈ R, σ ∈ R(S))(1-3)

holds.
For an admissible representation π of Sn of finite length and a partition α of

m ≤ n, we denote by sα(π) the normalized Jacquet module of π with respect to
Pα. Let

µ∗(π) =
n∑

i=0

s.s.(s(i)(π)).

We can (and we shall) consider µ∗(π) ∈ R ⊗ R(S). Extend µ∗ additively to µ∗ :
R(S) → R⊗R(S). Denote

M∗ = (m⊗ 1) ◦ (∼ ⊗m∗) ◦ s ◦m∗.

Then,

µ∗(π o σ) = M∗(π) o µ∗(σ).(1-4)

Let ρi, i = 1, . . . , m, be irreducible cuspidal representations of general linear
groups, and let σ be a similar representation of Sq. Suppose that ρ1 × · · · × ρm is
a representation of GL(a, F ). If π is a subquotient of ρ1 × · · · × ρm o σ, then we
shall denote s(a)(π) also by

sGL(π).

Let τ ⊗ σ be a subquotient of sGL(π). If there exist irreducible cuspidal represen-
tations ρ′1, . . . , ρ

′
m′ of general linear groups such that τ ≤ ρ′1 × · · · × ρ′m′ , then we

shall say that the multiset (ρ′1, . . . , ρ
′
m′) is the GL-support of τ ⊗σ (in other words,

the GL-support of τ ⊗ σ is just the support of τ in the sense of [Z]).
We shall need the following fact proved in [T4].

1.1. Proposition. Let ρ and σ be irreducible unitarizable cuspidal representations
of GL(p, F ) and Sq, respectively. Suppose that ναρ o σ reduces for some α > 0
and let l be a nonnegative integer. Then the representation δ([ναρ, να+lρ])oσ con-
tains a unique irreducible subrepresentation, which we denote by δ([ναρ, να+lρ], σ).
This subrepresentation is square integrable and we have sGL(δ([ναρ, να+lρ], σ)) =
δ([ναρ, να+lρ])⊗σ. Moreover, µ∗(δ([ναρ, να+lρ], σ)) =

∑l
k=−1 δ([να+k+1ρ, να+lρ])

⊗ δ([ναρ, να+kρ], σ) (in this formula δ(∅, σ) denotes σ).

Now, we shall recall of the Langlands’ classification for the groups Sn. Let
δ1, . . . , δk be irreducible essentially square integrable representations of general lin-
ear groups which satisfy e(δi) > 0, i = 1, . . . , k, and let τ be an irreducible tempered
representation of Sq. Choose a permutation p of {1, . . . , k} such that e(δp(1)) ≥
(δp(2)) ≥ · · · ≥ e(δp(k)). Then the representation δp(1) × δp(2) × · · · × δp(k) o τ
has a unique irreducible quotient, which will be denoted by L(δ1, . . . , δk, τ). Then
L(δ1, . . . , δk, τ )̃ ∼= L(δ1, . . . , δk, τ̃ ).

For positive integers p and k we shall denote the following partition of pk by

(p)k = (p, p, . . . , p︸ ︷︷ ︸
k times

).(1-5)

Regarding sums and products, we shall have the following convention in this
paper. Let a, b ∈ (1/2) Z such that b− a ∈ Z. Suppose a ≤ b. Then

∑b
i=a xi (resp.
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i=a yi) will denote xa + xa+1 + xa+2 + · · ·+ xb (resp. yaya+1ya+2 . . . yb). If a > b,

then we shall take
∑b

i=a xi = 0.

2. Tempered representations corresponding to segments

In this section we shall fix an irreducible unitarizable cuspidal representation
ρ of GL(p, F ) and an irreducible cuspidal representation σ of Sq, such that there
exists α ≥ 0 in (1/2) Z so that ναρ o σ reduces (which implies ρ ∼= ρ̃), and that
νβρ o σ is irreducible for all β ∈ (α + Z)\{±α}. We shall also fix n ∈ Z, n ≥ 0 in
this section. Denote

ε(α) = min{α− i; i ∈ Z and α− i ≥ 0}.
Clearly, ε(α) ∈ {0, 1/2} and ε(α) ≤ α.

2.1. Lemma. Let τ be an irreducible subquotient of δ([ν−α−nρ, να+nρ])oσ. Then

sGL(τ) ≥
α+n+1∑
i=α+1

δ([νiρ, να+nρ])× δ([ν−i+1ρ, να+nρ])⊗ σ.(2-1)

If δ([ν−α−nρ, να+nρ]) o σ reduces, then

sGL(τ) ≤
α+n+1∑
i=−α+1

δ([νiρ, να+nρ])× δ([ν−i+1ρ, να+nρ])⊗ σ.(2-2)

Proof. First note that the representation δ([ν−α−nρ, να+nρ]) o σ is unitarizable.
Clearly sGL(τ) ≤ sGL(δ([ν−α−nρ, να+nρ]) o σ). We obtain from (1-1) and (1-4)

s.s.(sGL(δ([ν−α−nρ, να+nρ]) o σ))

=
α+n+1∑

i=−α−n

δ([νiρ, να+nρ])× δ([ν−i+1ρ, να+nρ])⊗ σ.
(2-3)

Note that all the terms on the right-hand side of (2-3) are irreducible, and the
terms corresponding to indexes i and −i + 1 are isomorphic. The multiplicity
of δ([ν−α−nρ, να+nρ]) ⊗ σ in (2-3) is two. Frobenius reciprocity implies that if
δ([ν−α−nρ, να+nρ])oσ reduces, then it reduces into two non-equivalent irreducible
representations.

The unitarizability of δ([ν−α−nρ, να+nρ]) o σ implies that τ is a subrepresenta-
tion of δ([ν−α−nρ, να+nρ]) o σ. Thus

(2-4) τ ↪→ δ([ν−α−nρ, να+nρ]) o σ

↪→ να+nρ× να+n−1ρ× · · · × ν−α−n+1ρ× ν−α−nρ o σ.

Frobenius reciprocity implies sGL(τ) ≥ δ([ν−α−nρ, να+nρ]) ⊗ σ. If n = 0, then
this implies that (2-1) holds. Suppose n ≥ 1. Now we shall prove that

(2-5) τ ↪→ (να+nρ× να+n−1ρ× · · · × νε(α)ρ)× (να+nρ× να+n−1ρ× · · · × νiρ)

× (νε(α)−1ρ× νε(α)−2ρ× · · · × ν−i+1ρ) o σ

for i = α + 1, α + 2, . . . , α + n + 1.
If i = α+n+1, then (2-5) holds because (2-4) holds. Suppose α+1 < i ≤ α+n+1,

and suppose that (2-5) holds for this i. First denote by

π = (να+nρ× να+n−1ρ× · · · × νε(α)ρ)× (να+nρ× να+n−1ρ× · · · × νiρ).
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Note that −i < −α − 1, and further −i + 1 < −α. Therefore, ν−i+1ρ o σ is
irreducible. This implies ν−i+1ρ o σ ∼= νi−1ρ o σ. Using this and the fact that
ε(α) ≤ α < i−1 (which implies νjρ×νi−1ρ ∼= νi−1ρ×νjρ for −i+2 ≤ j ≤ ε(α)−1,
because of the irreducibility), we get from (2-5) (which we have supposed to hold
for i)

(2-6) τ ↪→ π × (νε(α)−1ρ× νε(α)−2ρ× · · · × ν−i+1ρ) o σ

∼= π × (νε(α)−1ρ× νε(α)−2ρ× · · · × ν−i+2ρ) o (ν−i+1ρ o σ)
∼= π × (νε(α)−1ρ× νε(α)−2ρ× · · · × ν−i+2ρ) o (νi−1ρ o σ)

∼= π × (νε(α)−1ρ× νε(α)−2ρ× · · · × ν−i+3ρ)× (ν−i+2ρ× νi−1ρ) o σ

∼= π × (νε(α)−1ρ× νε(α)−2ρ× · · · × ν−i+3ρ)× (νi−1ρ× ν−i+2ρ) o σ

∼= π × (νε(α)−1ρ× νε(α)−2ρ× · · · × ν−i+4ρ)× (ν−i+3ρ× νi−1ρ)× ν−i+2ρ o σ

∼= π × (νε(α)−1ρ× νε(α)−2ρ× · · · × ν−i+4ρ)× (νi−1ρ× ν−i+3ρ)× ν−i+2ρ o σ
∼= · · · · · · · · · · · · ∼= · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

∼= π × νi−1ρ× (νε(α)−1ρ× νε(α)−2ρ× · · · × ν−i+3ρ× ν−i+2ρ) o σ

∼= (να+nρ× να+n−1ρ× · · · × νε(α)ρ)× (να+nρ× να+n−1ρ× · · · × νiρ× νi−1ρ)

× (νε(α)−1ρ× νε(α)−2ρ× · · · × ν−i+3ρ× ν−i+2ρ) o σ.

Note that (2-6) shows that (2-5) holds for i − 1. Therefore, we have proved by
induction that (2-5) holds.

Frobenius reciprocity implies from (2-5) that

(2-7) (να+nρ⊗ να+n−1ρ⊗ · · · ⊗ νε(α)ρ)⊗ (να+nρ⊗ να+n−1ρ⊗ · · · ⊗ νiρ)

⊗ (νε(α)−1ρ⊗ νε(α)−2ρ⊗ · · · ⊗ ν−i+1ρ)⊗ σ

is a subquotient of s(p)2(α+n)+1(τ), for i = α+1, α+2, . . . , α+n+1 (for the definition
of (p)2(α+n)+1 see (1-5)). Considering GL-supports of the representations on the
right-hand side of (2-3), the transitivity of Jacquet modules and (2-3) imply that
we must have

sGL(τ) ≥ δ([ν−i+1ρ, να+nρ])× δ([νiρ, να+nρ])⊗ σ(2-8)

for α + 1 ≤ i ≤ α + n + 1 (since the representation on the right-hand side is the
only irreducible representation appearing in the sum (2-3) which can have (2-7) as
a subquotient of a Jacquet module). Since the (irreducible) representations on the
right-hand side of (2-8), for i = α + 1, . . . , α + n + 1, are not equivalent (they have
different GL-supports), (2-8) implies (2-1).

Suppose that δ([ν−α−nρ, να+nρ])oσ reduces. Then this representation is a direct
sum of τ and an irreducible tempered representation τ ′. Since sGL(τ ′) satisfy the
estimate (2-1), we get (2-2) from (2-3) and (2-1).

2.2. Lemma. The multiplicity of

δ([νε(α)ρ, να+nρ])× δ([ν1−ε(α)ρ, να+nρ])⊗ σ(2-9)

in sGL(δ([ν−α−nρ, να+nρ])oσ) and sGL

((∏α+n
i=−α−n νiρ

)
o σ

)
is 2(1−ε(α)) (i.e.,

it is two if α ∈ Z and one otherwise).
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Proof. Write

(2-10) s.s.

(
sGL

((
α+n∏

i=−α−n

νiρ

)
o σ

))
=

(
α+n∏

i=−α−n

(νiρ + ν−iρ)

)
⊗ σ

=
∑

ε−α−n,ε−α−n+1,...,εα+n∈{±1}

(
α+n∏

i=−α−n

νεiiρ

)
⊗ σ.

Suppose α ∈ Z. From (2-3) we get δ([ρ, να+nρ]) × δ([νρ, να+nρ]) ⊗ σ as a sub-
quotient of sGL(δ([ν−α−nρ, να+nρ])oσ for terms corresponding to i = 0 and 1, and
only then. Thus, the multiplicity is two. To get δ([ρ, να+nρ])× δ([νρ, να+nρ])⊗ σ
as a subquotient of (2-10), we must have εi i ≥ 0 for all i in the sum (2-10). This
implies εi = sgn(i) for i 6= 0. Therefore, there are only two terms in the sum (2-10)
where δ([ρ, να+nρ])× δ([νρ, να+nρ])⊗ σ can be a subquotient (they correspond to
εi = sgn(i) for i 6= 0 and ε0 = ±1). In each of these two terms the multiplic-
ity is one. This ends the proof of the lemma in the case α ∈ Z. The proof for
α ∈ (1/2 + Z) is analogous (here all εii must be positive, which implies εi = sgn(i)
for all i).

2.3. Theorem. Let ρ be an irreducible unitarizable cuspidal representation of
GL(p, F ), let σ be an irreducible cuspidal representation of Sq and let n ∈ Z, n ≥ 0.
Suppose that ρ o σ reduces and that νiρ o σ is irreducible for all i ∈ Z\{0}. Then
ρ o σ = τ1 ⊕ τ2, where τ1 and τ2 are inequivalent irreducible representations. The
representation δ([ν−nρ, νnρ]) o σ splits into a sum of two inequivalent irreducible
representations. Each of them can be characterized as a unique common irreducible
subquotient of δ([ν−nρ, νnρ]) o σ and δ([νρ, νnρ])2 o τi. This subquotient will be
denoted by

δ([ν−nρ, νnρ]τi , σ).

We have

sGL(δ([ν−nρ, νnρ]τi , σ)) =
n+1∑
j=1

δ([νjρ, νnρ])× δ([ν−j+1ρ, νnρ])⊗ σ,(2-11)

δ([ν−nρ, νnρ]τi , σ)̃ ∼= δ([ν−nρ, νnρ]τ̃i , σ̃).(2-12)

If π is a subquotient of
(∏α+n

j=−α−n νjρ
)

o σ which has δ([ρ, νnρ])× δ([νρ, νnρ])⊗σ

as a subquotient of sGL(π), then π ∼= δ([ν−nρ, νnρ]τi , σ) for some i ∈ {1, 2}.
Proof. The reducibility of δ([ν−nρ, νnρ])oσ follows from Proposition 4.8 of [T5] (we
shall see this below again). The proof of Lemma 2.1 implies that δ([ν−nρ, νnρ])oσ
(and also ρ o σ) is a direct sum of two inequivalent irreducible representations.
Further, the multiplicity of δ([ρ, νnρ])× δ([νρ, νnρ])⊗ σ in

s.s.(sGL(δ([νρ, νnρ])2 o τi)) =

n+1∑
j=1

δ([νjρ, νnρ])× δ([ν−j+1ρ, ν−1ρ])

2

× ρ⊗ σ

is one. Lemma 2.2 tells us that the multiplicity of δ([ρ, νnρ]) × δ([νρ, νnρ]) ⊗ σ

in representations sGL(δ([ν−nρ, νnρ]) o σ) and sGL

((∏n
j=−n νjρ

)
o σ

)
is two.

This implies the reducibility of δ([ν−nρ, νnρ]) o σ, also the uniqueness of the com-
mon irreducible subquotient of δ([ν−nρ, νnρ]) o σ and δ([νρ, νnρ])2 o τi (therefore,



SQUARE INTEGRABLE REPRESENTATIONS 67

δ([ν−nρ, νnρ]τi , σ) is well defined in the theorem) . Passing to the contragredients,
we get that ρ o σ̃ ∼= ρ̃o σ̃ = τ̃1 ⊕ τ̃2, and that δ([ν−nρ, νnρ]τi , σ)̃ is a common irre-
ducible subquotient of (δ([ν−nρ, νnρ])oσ)̃ ∼= δ([ν−nρ, νnρ])oσ̃ and (δ([νρ, νnρ])2o
τi)̃ ∼= δ([ν−nρ, ν−1ρ])2 o τ̃i. From (1-3) we get s.s.(δ([ν−nρ, ν−1ρ])2 o τ̃i) =
s.s.(δ([νρ, νnρ])2 o τ̃i). Therefore, δ([ν−nρ, νnρ]τi , σ)̃ is a common irreducible sub-
quotient of δ([ν−nρ, νnρ]) o σ̃ and δ([νρ, νnρ])2 o τ̃i. The definition of δ([ν−nρ,
νnρ]τ̃i , σ) now implies δ([ν−nρ, νnρ]τi , σ)̃ ∼= δ([ν−nρ, νnρ]τ̃i , σ). This proves (2-
12). Inequalities (2-1) and (2-2) imply (2-11).

Lemma 2.2 and exactness of the Jacquet functors imply that if π is a subquotient
of
(∏α+n

j=−α−n νjρ
)

o σ having δ([ρ, νnρ]) × δ([νρ, νnρ]) ⊗ σ for a subquotient of

sGL(π), then π ≤ δ([ν−nρ, νnρ]) o σ. The first part of the proof now implies
π ∼= δ([ν−nρ, νnρ]τi , σ) for some i ∈ {1, 2}.

In the rest of this section we shall assume α > 0.

2.4. Lemma. Let α > 0.
(i) Suppose −α + 1 ≤ i ≤ α (which is equivalent to −α + 1 ≤ i and −α + 1 ≤

−i + 1). Then the multiplicity of

δ([νiρ, να+nρ])× δ([ν−i+1ρ, να+nρ])⊗ σ(2-13)

in all the following representations

sGL(δ([ν−α−nρ, να+nρ]) o σ),(2-14)

sGL(δ([ν−α+1ρ, να+nρ]) o δ([ναρ, να+nρ], σ)),(2-15)

sGL(δ([ν−α+1ρ, να+nρ])× δ([ναρ, να+nρ]) o σ))(2-16)

is two, except if α ∈ 1/2 + Z and i = 1/2, when the multiplicity is one.
(ii) The multiplicity of δ([ν−α−nρ, να+nρ])⊗ σ in (2-14) is 2.
(iii) The multiplicity of δ([ν−α−nρ, να+nρ])⊗ σ in (2-15) is 1.

Proof. From (2-3) we see that the multiplicities claimed in (i) for

sGL(δ([ν−α−nρ, να+nρ]) o σ)

holds (one gets multiplicity two in the case i 6= 1/2 from the fact that the repre-
sentations in the sum (2-3) corresponding to i and −i + 1 are isomorphic).

Further, write

(2-17) s.s.(sGL(δ([ν−α+1ρ, να+nρ]) o δ([ναρ, να+nρ], σ)))

=

 α+n+1∑
j=−α+1

δ([ν−j+1ρ, να−1ρ])× δ([νjρ, να+nρ])

× δ([ναρ, να+nρ])⊗ σ.

We are looking at the multiplicities of δ([νiρ, να+nρ]) × δ([ν−i+1ρ, να+nρ]) ⊗ σ
for −α + 1 ≤ i ≤ α (then −α + 1 ≤ i and −α + 1 ≤ −i + 1). Considering supports,
we see that we need to consider only the terms in the above sum corresponding to
−α+1 ≤ j ≤ α, and we see that we can get δ([νiρ, να+nρ])×δ([ν−i+1ρ, να+nρ])⊗σ
as a subquotient of the j-th term in the sum (2-17) if and only j = i or j = −i + 1
(note that −α + 1 ≤ −i + 1 ≤ α), and in these cases we have the multiplicity one
of δ([νiρ, να+nρ])× δ([ν−i+1ρ, να+nρ]) ⊗ σ in that term. This ends the proof that
the multiplicity claimed in (i) holds for (2-15).
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Write now

(2-18) s.s.(sGL(δ([ν−α+1ρ, να+nρ])× δ([ναρ, να+nρ]) o σ)))

=

 α+n+1∑
j=−α+1

δ([ν−j+1ρ, να−1ρ])× δ([νjρ, να+nρ])


×
(

α+n+1∑
k=α

δ([ν−k+1ρ, ν−αρ])× δ([νkρ, να+nρ])

)
⊗ σ.

Since ν−αρ is not in the GL-support of δ([νiρ, να+nρ]) × δ([ν−i+1ρ, να+nρ]) ⊗ σ,
to have δ([νiρ, να+nρ])× δ([ν−i+1ρ, να+nρ])⊗ σ for a subquotient of a term in the
sum (2-18), we need to take k = α. Therefore, the multiplicity is the same as in
(2-17), and this case we have already checked. Now the proof of (i) is complete.

Further, (ii) is evident from (2-3). Also, (iii) follows directly from (2-17). In both
cases we need to use that ν−α−nρ is in the GL-support of δ([ν−α−nρ, να+nρ]) ⊗
σ.

2.5. Theorem. Let ρ be an irreducible unitarizable cuspidal representation of
GL(p, F ), let σ be an irreducible cuspidal representation of Sq , let α ∈ (1/2) Z, α >
0 and n ∈ Z, n ≥ 0. Assume that ναρ o σ reduces and that νβρ o σ is irreducible
for β ∈ (α + Z)\{±α}.

(i) The representation δ([ν−α−nρ, να+nρ]) o σ splits into a direct sum of two
inequivalent irreducible representations.

(ii) The representations

δ([ν−α−nρ, να+nρ]) o σ and δ([ν−α+1ρ, να+nρ]) o δ([ναρ, να+nρ], σ)

have a unique irreducible subquotient in common, which we denote by

δ([ν−α−nρ, να+nρ], σ) or δ([ν−α−nρ, να+nρ]+, σ).

The other irreducible summand in δ([ν−α−nρ, να+nρ]) o σ will be denoted by

δ([ν−α−nρ, να+nρ]−, σ).

(iii) We have

sGL(δ([ν−α−nρ, να+nρ], σ))

=
α∑

i=−α−n

δ([νiρ, να+nρ])× δ([ν−i+1ρ, να+nρ])⊗ σ,
(2-19)

sGL(δ([ν−α−nρ, να+nρ]−, σ))

=
−α∑

i=−α−n

δ([νiρ, να+nρ])× δ([ν−i+1ρ, να+nρ])⊗ σ.
(2-20)

(iv) Suppose that π is a subquotient of
(∏α+n

i=−α−n νiρ
)

o σ such that

δ([νε(α)ρ, να+nρ])× δ([ν1−ε(α)ρ, να+nρ])⊗ σ

is a subquotient of sGL(π). Then π has multiplicity one in
(∏α+n

i=−α−n νiρ
)

oσ and

π ∼= δ([ν−α−nρ, να+nρ], σ).
(v) δ([ν−α−nρ, να+nρ]±, σ)

∼ ∼= δ([ν−α−nρ, να+nρ]±, σ̃).
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Proof. From (2-3) we see that δ([ν−α−nρ, να+nρ]) o σ is a multiplicity one repre-
sentation of the length ≤ 2 (see the proof of Lemma 2.1). Note that

δ([ν−α−nρ, να+nρ]) o σ ≤ δ([ν−α+1ρ, να+nρ])× δ([ναρ, να+nρ]) o σ,(2-21)

δ([ν−α+1ρ, να+nρ]) o δ([ναρ, να+nρ], σ)

≤ δ([ν−α+1ρ, να+nρ])× δ([ναρ, να+nρ]) o σ.

Since −α + 1 ≤ α ≤ α, (i) of Lemma 2.4 and inequalities (2-21) (together with
the exactness of Jacquet functors), imply that representations δ([ν−α−nρ, να+nρ])
oσ and δ([ν−α+1ρ, να+nρ])oδ([ναρ, να+nρ], σ) have at least one irreducible subquo-
tient in common. Further, (ii) and (iii) of Lemma 2.4 imply that δ([ν−α−nρ, να+nρ])
o σ is reducible and that it has a unique irreducible subquotient in common with
δ([ν−α+1ρ, να+nρ]) o δ([ναρ, να+nρ], σ). Denote this common irreducible subquo-
tient by π. Let π− be the other irreducible summand.

Suppose α ∈ Z. Lemma 2.4 (i) implies that the multiplicity of δ([νiρ, να+nρ])×
δ([ν−i+1ρ, να+nρ])⊗ σ, with −α + 1 ≤ i ≤ α, in

sGL(δ([ν−α−nρ, να+nρ]) o σ), sGL(δ([ν−α+1ρ, να+nρ]) o δ([ναρ, να+nρ], σ))
(2-22)

and sGL(δ([ν−α+1ρ, να+nρ])× δ([ναρ, να+nρ]) o σ)

is two. Thus, the exactness of Jacquet functors, (2-21) and the characterization of
π, imply

sGL(π) ≥
α∑

i=−α+1

δ([νiρ, να+nρ])× δ([ν−i+1ρ, να+nρ])⊗ σ,(2-23)

since terms in the above sums corresponding to i and −i + 1 are equivalent, and
these are the only equivalences among them.

Now let α ∈ (1/2) + Z. Lemma 2.4 (i) claims that the multiplicity of δ([νiρ,
να+nρ])× δ([ν−i+1ρ, να+nρ])⊗σ, with −α +1 ≤ i ≤ α, in the Jacquet modules (2-
22) is two, except if i = 1/2, when the multiplicity is one. Again from this, (2-21),
the exactness of Jacquet functors and the characterization of π we get that (2-23)
holds in this case (since the multiplicity of δ([νiρ, να+nρ])× δ([ν−i+1ρ, να+nρ])⊗σ,
for −α + 1 ≤ i ≤ α, in the right-hand side of inequality (2-23) is two, except for
i = 1/2, when we have the multiplicity one, and there are no other irreducible
subquotients of the right-hand side of (2-23)).

We know that π and π− satisfy inequality (2-1). Since there is no common
irreducible subquotient of right-hand sides of (2-1) and (2-23), (2-1) and (2-23)
imply

sGL(π) ≥
α+n+1∑
i=−α+1

δ([νiρ, να+nρ])× δ([ν−i+1ρ, να+nρ])⊗ σ,(2-24)

Now (2-2) implies that in (2-24) we have equality. Introducing a new index j =
−i + 1 in the sum on the right-hand side of (2-24), we get (2-19). Since π ⊕ π− =
δ([ν−α−nρ, να+nρ]) o σ, (2-3) and (2-19) imply (2-20).

Let α ∈ Z. Then (2-19) implies that the multiplicity of

δ([ρ, να+nρ])× δ([νρ, να+nρ])⊗ σ

in sGL(π) is ≥ 2 (since −α− n ≤ 0, 1 ≤ α). Now Lemma 2.2 and the exactness of
Jacquet functors imply (iv) in this case.
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Suppose α ∈ (1/2) + Z. Now (2-19) implies that the multiplicity of

δ([ν1/2ρ, να+nρ])2 ⊗ σ in sGL(π)

is ≥ 1 (since −α − n ≤ 1/2 ≤ α). In this case, Lemma 2.2 and the exactness of
Jacquet functors imply (iv) when α ∈ (1/2 + Z).

Note that π̃ is a subquotient of δ([ν−α−nρ, να+nρ])oσ̃ and δ([ν−α+1ρ, να+nρ])̃ o
δ([ναρ, να+nρ], σ)̃ ∼= δ([ν−α−nρ, να−1ρ]) o δ([ναρ, να+nρ], σ̃). Since

δ([ν−α−nρ, να−1ρ]) o δ([ναρ, να+nρ], σ̃)

and

δ([ν−α+1ρ, να+nρ]) o δ([ναρ, να+nρ], σ̃)

have the same Jordan-Hölder series, the characterization of δ([ν−α−nρ, να+nρ], σ̃)
implies π̃ ∼= δ([ν−α−nρ, να+nρ], σ̃). From π̃ ⊕ π̃− ∼= δ([ν−α−nρ, να+nρ]) o σ̃ =
δ([ν−α−nρ, να+nρ], σ̃)⊕ δ([ν−α−nρ, να+nρ]−, σ̃) and π̃ ∼= δ([ν−α−nρ, να+nρ], σ̃), we
get π̃− ∼= δ([ν−α−nρ, να+nρ]−, σ̃). Now the proof of the theorem is complete.

3. Definition of representations corresponding to segments

In this section ρ, σ and α will be as in the previous section: ρ is an irreducible
unitarizable cuspidal representation of GL(p, F ), σ is an irreducible cuspidal rep-
resentation of Sq and α ∈ (1/2) Z, α ≥ 0 is such that ναρ o σ reduces and νβρ o σ
is irreducible for β ∈ (α + Z)\{±α}. Further, we shall fix n, m ∈ Z which satisfy
0 ≤ n < m.

First we shall write four formulas which we will need in the proof of the lemma
that follows and later:

(3-1) µ∗
(
δ([ν−α−nρ, να+mρ]) o σ

)
=

α+m∑
a=−α−n−1

α+m∑
b=a

δ([ν−aρ, να+nρ])× δ([νb+1ρ, να+mρ])⊗ δ([νa+1ρ, νbρ]) o σ,

(3-2) s.s.(sGL(δ([ν−α−nρ, να+mρ]) o σ))

=
α+m+1∑
i=−α−n

δ([νiρ, να+mρ])× δ([ν−i+1ρ, να+nρ])⊗ σ,

(3-3) µ∗(δ([να+n+1ρ, να+mρ])× δ([ν−α−nρ, να+nρ]) o σ)

=
α+m∑

a=α+n

α+m∑
b=a

δ([ν−aρ, ν−α−n−1ρ])× δ([νb+1ρ, να+mρ])

×
α+n∑

a′=−α−n−1

α+n∑
b′=a′

δ([ν−a′ρ, να+nρ])× δ([νb′+1ρ, να+nρ])

⊗ δ([νa+1ρ, νbρ])× δ([νa′+1ρ, νb′ρ]) o σ,
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(3-4) s.s.(sGL(δ([να+n+1ρ, να+mρ])× δ([ν−α−nρ, να+nρ]) o σ))

=

 α+m+1∑
j=α+n+1

δ([νjρ, να+mρ])× δ([ν−j+1ρ, ν−α−n−1ρ])


×
(

α+n+1∑
i=−α−n

δ([νiρ, να+nρ])× δ([ν−i+1ρ, να+nρ])

)
⊗ σ.

Note that (3-2) follows from (3-1), and (3-4) from (3-3). Theorems 2.3 and 2.5
imply

δ([ν−α−nρ, να+nρ]) o σ = T1 ⊕ T2,(3-5)

where T1 and T2 are inequivalent irreducible tempered representations.

3.1. Lemma. (i) The multiplicity of δ([ν−α−nρ, να+mρ]) ⊗ σ in sGL(δ([ν−α−nρ,
να+mρ]) o σ) and in sGL(δ([να+n+1ρ, να+mρ])× δ([ν−α−nρ, να+nρ]) o σ) is two.

(ii) The multiplicity of δ([να+n+1ρ, να+mρ])⊗Ti in µ∗(δ([να+n+1ρ, να+mρ])oTi),
in µ∗(δ([να+n+1ρ, να+mρ])×δ([ν−α−nρ, να+nρ])oσ) and in µ∗(δ([ν−α−nρ, να+mρ])
o σ) is one. Further, δ([να+n+1ρ, να+mρ])⊗ Ti is not a subquotient of

µ∗(δ([να+n+1ρ, να+mρ]) o T3−i)

(i.e., the multiplicity is 0).

Proof. Denote by π = δ([ν−α−nρ, να+mρ])⊗σ. First note that if π is a subquotient
of the i-th term of the sum in (3-2), then i ≥ −α − n and −i + 1 ≥ −α − n,
since ν−α−n−1ρ is not in the GL-support of π. Further, since ν−α−nρ is in the
GL-support of π, we must have i = −α− n or −i + 1 = −α − n, i.e. i = −α − n
or i = α + n + 1. Now the (−α − n)-th term in the sum (3-2) is just π. Further,
the (α + n + 1)-th term is δ([να+n+1ρ, να+mρ]) × δ([ν−α−nρ, να+nρ]) ⊗ σ. The
multiplicity of π in this term is one. Since −α − n 6= α + n + 1, we have proved
that the multiplicity of π in (3-2) is two.

Now, we shall consider the multiplicity of π in (3-4). Suppose that π is a sub-
quotient of the term of the double sum on the right-hand side of (3-4), which
corresponds to indexes j and i. Since ν−α−n−1ρ is not in the GL-support of π, we
see that we must have j = α + n + 1. Note that for −α − n ≤ i ≤ α + n + 1,
−α − n ≤ i and −α − n ≤ −i + 1. Since ν−α−nρ is in the GL-support of π, we
must have i = −α − n or −i + 1 = −α − n, i.e., i = −α − n or i = α + n + 1.
For j = α + n + 1 and i = −α − n or α + n + 1, the corresponding term in both
cases is δ([να+n+1ρ, να+mρ]) × δ([ν−α−nρ, να+nρ]) ⊗ σ. The multiplicity of π in
this representation is one. Since −α− n 6= α + n + 1, the multiplicity of π in (3-4)
is two. This ends the proof of (i).

Now we will study when we can have δ([να+n+1ρ, να+mρ])⊗Ti as a subquotient
of the term of the right-hand side of (3-3) corresponding to indexes a, a′, b and
b′. Since ν−α−n−1ρ is not in the support of δ([να+n+1ρ, να+mρ]), from the term
δ([ν−aρ, ν−α−n−1ρ]) we see that we must have −a > −α−n− 1, i.e., a < α+n+1
and further a ≤ α + n. Since α + n ≤ a, we get that it must be a = α + n. Since
να+nρ is not in the support of δ([να+n+1ρ, να+mρ]), in the same way we conclude
that we must have −a′ > α + n, i.e., a′ < −α − n. Since −α − n − 1 ≤ a′,
a′ = −α − n − 1. For the same reason we must have b′ + 1 > α + n. Now
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b′ ≤ α + n implies b′ = α + n. Therefore, up to now we have concluded that the
term which has δ([να+n+1ρ, να+mρ]) ⊗ Ti as a subquotient is δ([νb+1ρ, να+mρ]) ⊗
δ([να+n+1ρ, νbρ])×δ([ν−α−nρ, να+nρ])oσ, with α+n ≤ b ≤ α+m. Since να+n+1ρ
is in the support of δ([να+n+1ρ, να+mρ]), we need to have b + 1 ≤ α + n + 1. Now
α+n ≤ b implies b = α+n. Therefore, there is only one set of indexes a, a′, b, b′ for
which δ([να+n+1ρ, να+mρ]) ⊗ Ti could be a subquotient. Then the corresponding
term is δ([να+n+1ρ, να+mρ]) ⊗ δ([ν−α−nρ, να+nρ]) o σ. From (3-5) we know that
the multiplicity of δ([να+n+1ρ, να+mρ])⊗Ti in this term is one. This completes the
proof that the multiplicity of δ([να+n+1ρ, να+mρ])⊗ Ti in (3-3) is one.

Frobenius reciprocity implies

δ([να+n+1ρ, να+mρ])⊗ Ti ≤ µ∗(δ([να+n+1ρ, να+mρ]) o Ti).

Now δ([να+n+1ρ, να+mρ])o(δ([ν−α−nρ, να+nρ])oσ) = δ([να+n+1ρ, να+mρ])oT1⊕
δ([να+n+1ρ, να+mρ])oT2 and the first part of the proof imply that the multiplicity
of δ([να+n+1ρ, να+mρ]) ⊗ Ti in µ∗(δ([να+n+1ρ, να+mρ]) o Ti) and µ∗(δ([να+n+1ρ,
να+mρ]) o T3−i) is one and zero, respectively.

Note that the term in (3-1) corresponding to a = −α − n − 1, b = α + n is
the representation δ([να+n+1ρ, να+mρ]) ⊗ δ([ν−α−nρ, να+nρ]) o σ. This implies
δ([να+n+1ρ, να+mρ])⊗Ti≤µ∗(δ([ν−α−nρ, να+mρ])oσ). Since δ([ν−α−nρ, να+mρ])o
σ ≤ δ([να+n+1ρ, να+mρ])×δ([ν−α−nρ, να+nρ])oσ, the first part of the proof implies
that δ([να+n+1ρ, να+mρ])⊗Ti has multiplicity one in µ∗(δ([ν−α−nρ, να+mρ]) o σ).
Now the proof of the lemma is complete.

3.2. Proposition. Let ρ and σ be irreducible unitarizable cuspidal representations
of GL(p, F ) and Sq respectively, and let α ∈ (1/2) Z, α ≥ 0. Suppose that ναρ o σ
reduces and νβρoσ is irreducible for β ∈ (α+Z)\{±α}. Let n, m ∈ Z, m > n ≥ 0.
Suppose that T1 and T2 satisfy (3-5).

(i) The representation δ([να+n+1ρ, να+mρ])oTi has a unique irreducible subrep-
resentation, which will be denoted by

δ([ν−α−nρ, να+mρ], σ)Ti .

Representations δ([ν−α−nρ, να+mρ], σ)T1 and δ([ν−α−nρ, να+mρ], σ)T2 are inequiv-
alent. They are subrepresentations of δ([ν−α−nρ, να+mρ])oσ and they are the only
irreducible subrepresentations of it.

(ii) δ([ν−α−nρ, να+mρ], σ)Ti is a unique irreducible subquotient of δ([να+n+1ρ,
να+mρ])oTi which has δ([ν−α−nρ, να+mρ])⊗σ for a subquotient of a corresponding
Jacquet module.

(iii) δ([ν−α−nρ, να+mρ], σ)
∼
Ti

∼= δ([ν−α−nρ, να+mρ], σ̃)T̃i
.

Proof. By Frobenius reciprocity, δ([να+n+1ρ, να+mρ]) ⊗ Ti ≤ µ∗(τ) for each irre-
ducible subrepresentation τ of δ([να+n+1ρ, να+mρ]) o Ti. The above lemma shows
that the multiplicity of δ([να+n+1ρ, να+mρ])⊗ Ti in µ∗(δ([να+n+1ρ, να+mρ]) o Ti)
is one. This implies the uniqueness of irreducible subrepresentation in δ([να+n+1ρ,
να+mρ]) o Ti.

Denote πi = δ([να+n+1ρ, να+mρ], σ)Ti . As we noted, δ([να+n+1ρ, να+mρ])⊗Ti ≤
µ∗(πi). Lemma 3.1 (ii) implies δ([να+n+1ρ, να+mρ])⊗ T3−i 6≤ µ∗(πi). This implies
inequivalence of π1 and π2.
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Consider now

δ([ν−α−nρ, να+mρ]) o σ ↪→ δ([να+n+1ρ, να+mρ])× δ([ν−α−nρ, να+nρ]) o σ(3-6)
∼= δ([να+n+1ρ, να+mρ]) o T1 ⊕ δ([να+n+1ρ, να+mρ]) o T2.(3-7)

We shall identify δ([ν−α−nρ, να+mρ])oσ with a subrepresentation of (3-7) under the
embedding in (3-6) and the isomorphism in (3-7). Note that (ii) of Lemma 3.1 and
the above paragraph imply that the multiplicity of πi in (3-7) is one. Suppose πi ∩
δ([ν−α−nρ, να+mρ]) o σ = {0}. Since the multiplicity of δ([να+n+1ρ, να+mρ])⊗ Ti

in µ∗(πi) and µ∗(δ([ν−α−nρ, να+mρ])oσ) is one (the later multiplicity follows from
(ii) of Lemma 3.1), the exactness of Jacquet functors implies that the multiplicity of
the representation δ([να+n+1ρ, να+mρ])⊗ Ti in the corresponding Jacquet module
of (3-7) is ≥ 2. This contradicts (ii) of Lemma 3.1. Thus, πi are irreducible subrep-
resentations of δ([ν−α−nρ, να+mρ]) o σ. Since δ([ν−α−nρ, να+mρ]) ⊗ σ ≤ sGL(τ)
for each irreducible subrepresentation τ of δ([ν−α−nρ, να+mρ]) o σ, and the multi-
plicity of δ([ν−α−nρ, να+mρ])⊗ σ in sGL(δ([ν−α−nρ, να+mρ]) o σ) is two by (i) of
Lemma 3.1, δ([ν−α−nρ, να+mρ])oσ has at most two irreducible subrepresentations.
Therefore, πi are the only irreducible subrepresentations of δ([ν−α−nρ, να+mρ])oσ.
Note that δ([ν−α−nρ, να+mρ]) ⊗ σ ≤ sGL(πi) implies δ([ν−α−nρ, να+mρ]) ⊗ σ ≤
sGL(δ([να+n+1ρ, να+mρ]) o Ti). Now (i) of Lemma 3.1 implies that the multiplic-
ity of δ([ν−α−nρ, να+mρ]) ⊗ σ in sGL(δ([να+n+1ρ, να+mρ]) o Ti) is one. This and
δ([ν−α−nρ, να+mρ])⊗ σ ≤ sGL(πi) imply the characterization of πi in (ii).

Note that δ([ν−α−nρ, να+nρ]) o σ̃ ∼= T̃1 ⊕ T̃2. Observe that π̃i is a quotient of
the representation δ([ν−α−mρ, ν−α−n−1ρ]) o T̃i. The reciprocity (2) in Theorem
2.4.3 of [Si] implies that δ([ν−α−mρ, ν−α−n−1ρ]) ⊗ T̃i is a quotient of a Jacquet
module of π̃i with respect to a corresponding parabolic subgroup which is opposite
to a standard one. Conjugating the Jacquet modules with an element of the Weyl
group which carry the opposite parabolic subgroup to the standard one, we get
δ([να+n+1ρ, να+mρ])⊗ T̃i ≤ µ∗(π̃i). This implies (iii).

We shall now introduce a convention which will simplify notation in the rest of
the paper.

Suppose α = 0. Write ρ o σ = τ1 ⊕ τ2 as a sum of irreducible representations.
In Theorem 2.3 we have introduced representations δ([ν−α−nρ, να+nρ]τi , σ). For
Ti = δ([ν−α−nρ, να+nρ]τi , σ) we shall denote δ([ν−α−nρ, να+mρ], σ)Ti also by

δ([ν−α−nρ, να+mρ]τi , σ).(3-8)

Now we get δ([ν−α−nρ, να+mρ]τi , σ)
∼ ∼= δ([ν−α−nρ, να+mρ]τ̃i , σ̃) from Theorem 2.3

and Proposition 3.2.
Let α > 0. In Theorem 2.5 we have introduced representations δ([ν−α−nρ,

να+nρ]±, σ). We shall denote δ([ν−α−nρ, να+mρ], σ)δ([ν−α−nρ,να+nρ]±,σ) also by

δ([ν−α−nρ, να+mρ]±, σ).(3-9)

We shall also denote δ([ν−α−nρ, να+mρ]+, σ) simply by δ([ν−α−nρ, να+mρ], σ).
Theorem 2.5 and Proposition 3.2 imply δ([ν−α−nρ, να+mρ]±, σ)

∼ ∼= δ([ν−α−nρ,
να+mρ]±, σ̃).

We shall end this section with a simple lemma.
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3.3. Lemma. The multiplicity of δ([νε(α)ρ, να+mρ])× δ([ν1−ε(α)ρ, να+nρ])⊗ σ in
the representations sGL(δ([ν−α−nρ, να+mρ]) o σ) and sGL

((∏α+m
i=−α−n νiρ

)
o σ

)
is 2(1− ε(α)).

Proof. First note s.s.
(
sGL

((∏α+m
i=−α−n νiρ

)
o σ

))
=
∑(∏α+m

i=−α−n νεiiρ
)
⊗ σ,

where the sum runs over all ε−α−n, ε−α−n+1, . . . , εα+m ∈ {±1} (one gets this for-
mula in the same way as (2-10); the proof of the lemma is also similar to the proof
of Lemma 2.2).

Let α ∈ Z. To get δ([ρ, να+mρ]) × δ([νρ, να+nρ]) ⊗ σ as a subquotient of the
above representation, we must have all εii ≥. Obviously, only two systems of εi’s
satisfy this condition. The multiplicity in the corresponding terms is one. This
directly implies the multiplicity two of δ([ρ, να+mρ]) × δ([νρ, να+nρ]) ⊗ σ in the
above representation.

Considering GL-supports, we see that we can get δ([ρ, να+mρ])×δ([νρ, να+nρ])⊗
σ as a subquotient of a term in the sum (3-2) only if i = 0 or 1. For correspond-
ing terms the multiplicity is one. Therefore, the multiplicity of δ([ρ, να+mρ]) ×
δ([νρ, να+nρ])⊗σ in (3-2) is two. This completes the proof of the lemma for α ∈ Z.

Suppose α ∈ (1/2 + Z). In this case, only one system of εi’s satisfy εii >
0 (since i ∈ 1/2 + Z). This implies the multiplicity one of δ([ν1/2ρ, να+mρ]) ×
δ([ν1/2ρ, να+nρ]) ⊗ σ in the Jacquet module sGL

((∏α+m
i=−α−n νiρ

)
o σ

)
. Further,

note that the representation δ([ν1/2ρ, να+mρ]) × δ([ν1/2ρ, να+nρ]) ⊗ σ is equal to
the term of the sum (3-2) corresponding to i = 1/2, and all other terms in the
sum (3-2) have different GL-supports from the GL-support of δ([ν1/2ρ, να+mρ])×
δ([ν1/2ρ, να+nρ]) ⊗ σ. This implies the multiplicity one of the last representation
in (3-2). The proof is now complete.

4. Square integrability, the case of positive α

In this section ρ, σ, α, n and m are as in the last section, except that we addi-
tionally assume, in this section that, α > 0.

4.1. Lemma. Let π be an irreducible subquotient of
(∏α+m

i=−α−n νiρ
)

oσ such that

δ([νε(α)ρ, να+mρ])× δ([ν1−ε(α)ρ, να+nρ])⊗ σ ≤ sGL(π). Then
(i) π ≤ δ([ν−α−nρ, να+mρ]) o σ;
(ii) δ([ν−α−nρ, να+mρ])⊗ σ ≤ sGL(π);
(iii) π ∼= δ([ν−α−nρ, να+mρ], σ);
(iv) 2δ([ρ, να+mρ])× δ([νρ, να+nρ])⊗ σ ≤ sGL(π) if α ∈ Z.

Proof. Lemma 3.3 and the exactness of the Jacquet functor imply (i).
Suppose α ∈ Z. One directly checks that

(4-1) 2δ([ρ, να+mρ])× δ([νρ, να+nρ])⊗ σ

≤ s.s.(sGL(δ([ν−α−nρ, να−1ρ]) o δ([ναρ, να+mρ], σ)))

= δ([ναρ, να+mρ])×
α∑

i=−α−n

δ([νiρ, να−1ρ])× δ([ν−i+1ρ, να+nρ], σ)⊗ σ

(consider the terms in the sum for i = 0 and 1). Observe that (4-1) implies

δ([ν−α−nρ, να+mρ])⊗ σ ≤ sGL(δ([ν−α−nρ, να−1ρ]) o δ([ναρ, να+mρ], σ)).(4-2)



SQUARE INTEGRABLE REPRESENTATIONS 75

Further, (4-1) and Lemma 3.3 imply

π ≤ δ([ν−α−nρ, να−1ρ]) o δ([ναρ, να+mρ], σ).(4-3)

The assumption on π and (1-4) imply

δ([ρ, να+mρ])× δ([νρ, να+mρ])⊗ σ ≤ sGL(δ([να+n+1ρ, να+mρ]) o π).(4-4)

Now (iv) of Theorem 2.5 implies

δ([ν−α−mρ, να+mρ], σ) ≤ δ([να+n+1ρ, να+mρ]) o π.(4-5)

Further, (iii) of the same theorem implies

δ([ν−α−mρ, να+mρ])⊗ σ ≤ sGL(δ([να+n+1ρ, να+mρ]) o π).(4-6)

Suppose π 6∼= δ([ν−α−nρ, να+mρ]±, σ). Then (i) of Lemma 4.1, (i) of Proposition
3.2 and (i) of Lemma 3.1 imply that δ([ν−α−nρ, να+mρ])⊗ σ is not a subquotient
of sGL(π). Further, (4-3) and (4-2) imply

sGL(π)≤sGL(δ([ν−α−nρ, να−1ρ])oδ([ναρ, να+mρ], σ))−δ([ν−α−nρ, να+mρ])⊗ σ.

This and (4-6) imply

δ([ν−α−mρ, να+mρ])⊗ σ ≤
α+m+1∑

i=α+n+1

δ([νiρ, να+mρ])

× δ([ν−i+1ρ, ν−α−n−1ρ])

×
(

δ([ναρ, να+mρ])×
α+n+1∑

j=−α+1

δ([νjρ, να+nρ])

× δ([ν−j+1ρ, να−1ρ])− δ([ν−α−nρ, να+mρ])
)
⊗ σ.

(4-7)

Note that ν−α−mρ and ν−α−nρ are in the GL-support of δ([ν−α−nρ, να+mρ])⊗ σ.
It is easy to see that the only term in the above sum, which has both representations
in the GL-support, is the term corresponding to i = α + m + 1 and j = α + n + 1
(use that −α−m < α + n + 1 and −α− n < −α + 1). Thus

(4-8) δ([ν−α−mρ, να+mρ]) ≤ δ([ν−α−mρ, ν−α−n−1ρ])

× (δ([ναρ, να+mρ])× δ([ν−α−nρ, να−1ρ])− δ([ν−α−nρ, να+mρ])
)

= δ([ν−α−mρ, ν−α−n−1ρ])× δ([ναρ, να+mρ])× δ([ν−α−nρ, να−1ρ])

− δ([ν−α−mρ, ν−α−n−1ρ])× δ([ν−α−nρ, να+mρ])
)
.

Since the multiplicity of δ([ν−α−mρ, να+mρ]) in each of the representations in
the last two lines of (4-8) is one, we get that (4-8) cannot hold. This contradiction
implies π ∼= δ([ν−α−nρ, να+mρ]±, σ). This and (i) of Proposition 3.2 imply (ii)
when α ∈ Z.

From (2-20) and (1-4) we see that δ([ρ, να+mρ]) × δ([νρ, να+nρ]) ⊗ σ is not a
subquotient of

δ([να+n+1ρ, να+mρ])× δ([ν−α−nρ, να+nρ]−, σ).(4-9)

This implies π 6∼= δ([ν−α−nρ, να+mρ]−, σ), which implies π∼=δ([ν−α−nρ, να+mρ], σ).
Thus, we have proved (iii) also, when α ∈ Z.

The case of α ∈ (1/2) + Z proceeds analogously. One needs to check only that
the inequality obtained from (4-1) putting δ([ν1/2ρ, να+mρ])×δ([ν1/2ρ, να+nρ])⊗σ
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instead of 2δ([ρ, να+mρ])×δ([νρ, να+nρ])⊗σ holds (consider the term corresponding
to i = 1/2), and that δ([ν1/2ρ, να+mρ])× δ([ν1/2ρ, να+nρ])⊗σ is not a subquotient
of (4-9), which follows from (2-20).

Let α ∈ Z. Suppose that the multiplicity of δ([ρ, να+mρ]) × δ([νρ, να+nρ]) ⊗
σ in sGL(π) is one. Then (i) of Lemma 3.1 implies that there is an irreducible
subquotient π′ of δ([ν−α−nρ, να+mρ]) o σ such that

π + π′ ≤ δ([ν−α−nρ, να+mρ]) o σ,(4-10)

δ([ρ, να+mρ])× δ([νρ, να+nρ])⊗ σ ≤ sGL(π′).(4-11)

Since π′ satisfies the same condition (4-9) which is satisfied by π, then (4-5) also
holds for π′.

Multiplying relation (4-10) with δ([ν−α−mρ, ν−α−n−1ρ]) from the left-hand side,
we get δ([ν−α−mρ, ν−α−n−1ρ]) o π + δ([ν−α−mρ, ν−α−n−1ρ]) o π′ ≤ δ([ν−α−mρ,
ν−α−n−1ρ]) × δ([ν−α−nρ, να+mρ]) o σ. This relation and inequalities (4-5) in the
cases of π and π′, imply 2δ([ν−α−mρ, να+mρ], σ) ≤ δ([ν−α−mρ, ν−α−n−1ρ]) ×
δ([ν−α−nρ, να+mρ]) o σ. This contradicts to (iv) of Theorem 2.5, and ends the
proof of (iv).

Summing up, it is easy to see that the following proposition holds.

4.2. Proposition. Let π be an irreducible subquotient of
(∏α+m

i=−α−n νiρ
)

oσ which

satisfies δ([νε(α)ρ, να+mρ])×δ([ν1−ε(α)ρ, να+nρ])⊗σ ≤ sGL(π). Then the multiplic-
ity of π in

(∏α+m
i=−α−n νiρ

)
oσ is one, π is a subquotient of δ([ν−α−nρ, να+mρ])oσ

and π ∼= δ([ν−α−nρ, να+mρ], σ). Further, the multiplicity of δ([ν−α−nρ, να+mρ])⊗σ
in sGL(π) is one, and of δ([νε(α)ρ, να+mρ]) × δ([ν1−ε(α)ρ, να+nρ]) ⊗ σ is
2(1 − ε(α)). Let π′ be an irreducible subquotient of δ([ν−α−nρ, να+mρ]) o σ which
satisfies δ([ν−α−nρ, να+mρ]) ⊗ σ ≤ sGL(π′) and δ([νε(α)ρ, να+mρ]) × δ([ν1−ε(α)ρ,
να+nρ]) ⊗ σ 6≤ sGL(π′). Then the multiplicity of π′ in δ([ν−α−nρ, να+mρ]) o σ is
one and π′ ∼= δ([ν−α−nρ, να+mρ]−, σ).

4.3. Lemma. For −α−n ≤ j < 0, j ∈ α+Z, δ([νjρ, να+mρ])×δ([ν−j+1ρ, να+nρ])
⊗ σ is irreducible and its multiplicity in sGL(δ([ν−α−nρ, να+mρ]) o σ)) is two.

Proof. Since j < −j + 1 when j < 0, we have irreducibility. Suppose that
δ([νjρ, να+mρ]) × δ([ν−j+1ρ, να+nρ]) ⊗ σ is a subquotient of the i-th term in the
sum (3-2) for fixed j as in the lemma. Considering νj−1ρ, which is not in the GL-
support of δ([νjρ, να+mρ])×δ([ν−j+1ρ, να+nρ])⊗σ, we get that i ≥ j and −i+1 ≥
j. Since νjρ is in the GL-support of δ([νjρ, να+mρ]) × δ([ν−j+1ρ, να+nρ]) ⊗ σ,
we get i = j or −i + 1 = j (i.e., i = −j + 1). Now the j-th term is just
δ([νjρ, να+mρ])× δ([ν−j+1ρ, να+nρ])⊗ σ. Further, (−j + 1)-th term is δ([ν−j+1ρ,
να+mρ]) × δ([νjρ, να+nρ]) ⊗ σ. Since j < −j + 1, α + n < α + m and −j ≤
α + n, the segments in the last representation are linked, and linking them we
get δ([νjρ, να+mρ]) × δ([ν−j+1ρ, να+nρ]) ⊗ σ. Therefore, the multiplicity in the
(−j + 1)-th term is also one. Since j 6= −j + 1 for j as in the lemma, we get that
the multiplicity is two.

The proof of the following lemma proceeds similarly to the proof of Lemma 2.1.

4.4. Lemma. Let π be an irreducible subrepresentation of δ([ν−α−nρ, να+mρ])oσ
satisfying sGL(π) ≤ k

∑α
j=−α−n δ([νjρ, να+mρ])× δ([ν−j+1ρ, να+nρ])⊗σ, for some

k ∈ Z, k > 0. Then sGL(π) ≥∑−α
j=−α−n δ([νjρ, να+mρ])× δ([ν−j+1ρ, να+nρ])⊗ σ.
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Proof. First, we shall prove by induction

π ↪→ (να+mρ× να+m−1ρ× · · · × νε(α)ρ)× (να+nρ× να+n−1ρ× · · · × ν−i+1ρ)

× (νε(α)−1ρ× νε(α)−2ρ× · · · × νiρ) o σ

for i = −α− n,−α− n + 1, . . . ,−α. Since we know that π ↪→ δ([ν−α−nρ, να+mρ])
o σ ↪→ να+mρ × να+m−1ρ × · · · × ν−α−n+1ρ × ν−α−nρ o σ, the claim holds for
i = −α − n. Let −α − n ≤ i < −α, and suppose that the claim holds for this
i. It is worth noting that the isomorphism νiρ o σ ∼= ν−iρ o σ follows from the
irreducibility of νiρ o σ (recall −i > α). Further, for j = i + 1, i + 2, . . . , ε(α)− 1,
we have −i > α > ε(α)− 1 ≥ j, which implies −i ≥ j + 2. Therefore, ν−iρ× νjρ ∼=
νjρ × ν−iρ. These two facts imply the claim for i + 1 (see (2-6) for a proof of a
similar implication). This ends the proof of the above embedding. Now Frobenius
reciprocity implies that

τi = (να+mρ⊗ να+m−1ρ⊗ · · · ⊗ νε(α)ρ)⊗ (να+nρ⊗ να+n−1ρ⊗ · · · ⊗ ν−i+1ρ)

⊗ (νε(α)−1ρ⊗ νε(α)−2ρ⊗ · · · ⊗ νiρ)⊗ σ, i = α + 1, α + 2, . . . , α + n + 1,

is a subquotient of the corresponding Jacquet module of π. The transitivity of
Jacquet functors implies that τi is in a corresponding Jacquet module of at least one
irreducible subquotient of sGL(π). Thus, it must be in the corresponding Jacquet
module of at least one irreducible subquotient of the upper bound of sGL(π) given
in the lemma. Since for −α + 1 ≤ j ≤ α, νiρ is not in the GL-support of the
corresponding term in the upper bound (i is as above), we see that τi can be a
subquotient only of a term corresponding to −α − n ≤ j ≤ −α. Note that the
terms corresponding to these indexes are irreducible representations. Since for
j = i, νiρ is and νi−1ρ is not in the GL-support of the corresponding term, and
this is the only term satisfying this condition, we see that τi must be a subquotient
of the i-th term. Since this is the only irreducible subquotient in the upper bound
which has τi in the corresponding Jacquet module, this implies that the i-th term
in the upper bound must be a subquotient of sGL(π). Since the terms in the upper
bound corresponding to different −α + 1 ≤ i ≤ α are inequivalent, the claim of the
lemma follows directly.

4.5. Theorem. Suppose that ρ and σ are irreducible unitarizable cuspidal repre-
sentations of GL(p, F ) and Sq respectively, and α ∈ (1/2) Z, α > 0, is such that
ναρ o σ reduces and νβρ o σ is irreducible for β ∈ (α + Z)\{±α}. Fix n, m ∈ Z
satisfying 0 ≤ n < m. Then

sGL(δ([ν−α−nρ, να+mρ]−, σ))

=
−α∑

i=−α−n

δ([νiρ, να+mρ])× δ([ν−i+1ρ, να+nρ])⊗ σ,
(4-12)

and δ([ν−α−nρ, να+mρ]−, σ) is square integrable. (Note that (4-12) holds also if
n = m.)

Proof. Observe δ([ν−α−nρ, να+mρ])oσ ≤ δ([ν−α+1ρ, να+mρ])×δ([ναρ, να+nρ])oσ.
Proposition 3.2 implies

δ([ν−α−nρ, να+mρ]±, σ) ≤ δ([ν−α+1ρ, να+mρ])× δ([ναρ, να+nρ]) o σ,(4-13)
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Write

(4-14) s.s.(sGL(δ([ν−α+1ρ, να+mρ])× δ([ναρ, να+nρ], σ)))

= δ([ναρ, να+nρ])×
α+m+1∑
i=−α+1

δ([νiρ, να+mρ])× δ([ν−i+1ρ, να−1ρ])⊗ σ.

Note that δ([ρ, να+mρ]) × δ([νρ, να+nρ]) ⊗ σ (resp. δ([ν1/2ρ, να+mρ]) × δ([ν1/2ρ,
να+nρ])⊗ σ) is a subquotient of (4-14) if α ∈ Z (resp. α ∈ (1/2 + Z)). This follows
considering the term corresponding to i = 0 (resp. i = 1/2). Now Lemma 4.1
implies

δ([ν−α−nρ, να+mρ], σ) ≤ δ([ν−α+1ρ, να+mρ]) o δ([ναρ, να+nρ], σ).(4-15)

One directly checks that the multiplicity of δ([ν−α−nρ, να+mρ])⊗σ in (4-14) is one
(it must be a subquotient of the (α + n + 1)-th term in the sum). This fact, (4-13)
and Proposition 4.2 imply

(4-16) δ([ν−α−nρ, να+mρ]−, σ)

≤ δ([ν−α+1ρ, να+mρ]) o
(
δ([ναρ, να+nρ]) o σ − δ([ναρ, να+nρ], σ)

)
.

This inequality and Proposition 3.2 imply

sGL(δ([ν−α−nρ, να+mρ]−, σ))

≤
α+m+1∑
i=−α+1

δ([νiρ, να+mρ])× δ([ν−i+1ρ, να−1ρ])

×
α+n+1∑
j=α+1

δ([νjρ, να+nρ])× δ([ν−j+1ρ, ν−αρ])⊗ σ,

(4-17)

sGL(δ([ν−α−nρ, να+mρ]−, σ))

≤
α+m+1∑
i=−α−n

δ([νiρ, να+mρ])× δ([ν−i+1ρ, να+nρ])⊗ σ.
(4-18)

Suppose that π is an irreducible subquotient of a term on the right-hand side of
(4-17) which corresponds to indexes i and j, and which is also a subquotient of a
term on the right-hand side of (4-18) corresponding to i′. Note that ν−αρ is in the
GL-support of all the (irreducible subquotients of) terms in the second sum on the
right-hand side of (4-17) (consider δ([ν−j+1ρ, ν−αρ])). Since ν−αρ can be at most
once in the GL-support of a subquotient of the right-hand side of (4-18), we get
−α < −i + 1, and further i < α + 1. Since ν−αρ is in the GL-support of π (as
we already observed), (4-18) implies that ν−α+1ρ is also in the support of π. This
implies i ≤ −α + 1 or −i + 1 ≤ −α + 1 (since −α + 1 < α + 1), i.e., i = −α + 1 or
α ≤ i. Thus, i = −α + 1 or i = α (since we know i < −α + 1 already). The above
discussion and (4-17) imply

(4-19) sGL(δ([ν−α−nρ, να+mρ]−, σ))

≤ (δ([ν−α+1ρ, να+mρ]) + δ([ναρ, να+mρ])× δ([ν−α+1ρ, να−1ρ]))

×
α+n+1∑
j=α+1

δ([νjρ, να+nρ])× δ([ν−j+1ρ, ν−αρ])⊗ σ.
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Further, (4-18) and the fact that ν−αρ is always in the GL-support of π imply

sGL(δ([ν−α−nρ, να+mρ]−, σ))

≤
−α∑

i=−α−n

δ([νiρ, να+mρ])× δ([ν−i+1ρ, να+nρ])⊗ σ

+
α+n+1∑
i=α+1

δ([νiρ, να+mρ])× δ([ν−i+1ρ, να+nρ])⊗ σ.

(4-20)

Note that terms in the third row of (4-20) are multiplicity one representations
of length two. From (4-19) we see that if π = L(δ(∆1), . . . , δ(∆k))⊗ σ and if some
∆j ends with να+mρ, then ∆j must also contain ναρ. This fact and (4-20) imply

sGL(δ([ν−α−nρ, να+mρ]−, σ))

≤
−α∑

i=−α−n

δ([νiρ, να+mρ])× δ([ν−i+1ρ, να+nρ])⊗ σ

+
α+n+1∑
i=α+1

δ([ν−i+1ρ, να+mρ])× δ([νiρ, να+nρ])⊗ σ

= 2
−α∑

i=−α−n

δ([νiρ, να+mρ])× δ([ν−i+1ρ, να+nρ])⊗ σ.

(4-21)

Now the square integrability of δ([ν−α−nρ, να+mρ]−, σ) follows from the above
estimate, using the Casselman’s square integrability criterion (Theorem 4.4.6 of
[C1]; see also the sixth section of [T2]).

Further, (4-21) and Lemma 4.4 imply that the inequality ≥ holds in (4-12). It is
enough to show that the inequality ≤ holds in (4-12). There are two ways to prove
that. The shorter way is to conclude it from (4-23), which we shall prove without
using (4-12), and from Lemma 4.3. The other way is to get it from (4-21) and the
following lemma.

4.6. Lemma. (i) δ([ν−α−nρ, να+mρ]−, σ) ≤ δ([να+n+1ρ, να+mρ]) × δ([ν−α−nρ,
να+nρ]−, σ).

(ii) sGL(δ([να+n+1ρ, να+mρ])×δ([ν−α−nρ, να+nρ]−, σ)) is a multiplicity one rep-
resentation.

Proof. First, we obtain directly δ([ν−α−nρ, να+mρ])⊗σ ≤ sGL(δ([να+n+1ρ, να+mρ])
× δ([ν−α−nρ, να+nρ]−, σ)). Further, we note that δ([ρ, να+mρ]) × δ([νρ, να+nρ])
⊗ σ (resp. δ([ν1/2ρ, να+mρ]) × δ([ν1/2ρ, να+nρ]) ⊗ σ) is not a subquotient of
sGL(δ([να+n+1ρ, να+mρ]) ×δ([ν−α−nρ, να+nρ]−, σ)) if α ∈ Z (resp. α ∈ (1/2+Z)).
These facts follow from (2-20) and (1-4), and together with the fact that the multi-
plicity of δ([ν−α−nρ, να+mρ])⊗σ in sGL(δ([να+n+1ρ, να+mρ])×δ([ν−α−nρ, να+nρ])
o σ) is two (by (i) of Lemma 4.1), imply (i). Now write

s.s.(sGL(δ([να+n+1ρ, να+mρ])× δ([ν−α−nρ, να+nρ]−, σ)))

=
α+m+1∑

i=α+n+1

δ([νiρ, να+mρ])× δ([ν−i+1ρ, ν−α−n−1ρ])

×
−α∑

j=−α−n

δ([νjρ, να+nρ])× δ([ν−j+1ρ, να+nρ])⊗ σ.
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Note that all the terms in the above double sum have different GL-supports. Be-
cause of this, to prove (ii), it is enough to prove that each of the terms is a multi-
plicity one representation. If i = α+n+1 or α+m+1, then Lemma 7.1 implies the
multiplicity one of the corresponding term (note that Lemma 7.1 is in the appendix,
which is independent of the rest of the text). Suppose that α + n + 2 ≤ i ≤ α + m
and −α−n ≤ j ≤ −α. Then the segment [νiρ, να+mρ] is not linked with any other
segment which shows up in the term corresponding to i and j. This and Lemma
7.1 imply the multiplicity one.

4.7. Theorem. Let ρ, σ, α, n and m be as in Theorem 4.5. Then

sGL(δ([ν−α−nρ, να+mρ], σ))

≤
α∑

i=−α−n

δ([νiρ, να+mρ])× δ([ν−i+1ρ, να+nρ])⊗ σ,
(4-22)

2(1− ε(α)) δ([νε(α)ρ, να+mρ])× δ([ν1−ε(α)ρ, να+nρ])⊗ σ

+
−α∑

i=−α−n

δ([νiρ, να+mρ])× δ([ν−i+1ρ, να+nρ])⊗ σ

≤ sGL(δ([ν−α−nρ, να+mρ], σ)),

(4-23)

and δ([ν−α−nρ, να+mρ], σ) is square integrable. (The above estimates also hold if
n = m.)

Proof. Denote π = δ([ν−α−nρ, να+mρ], σ).
Observe that the representation δ([νε(α)ρ, να+mρ])× δ([ν1−ε(α)ρ, να+nρ])⊗ σ is

a subquotient sGL(δ([ν−α+1ρ, να+nρ]) o δ([ναρ, να+mρ], σ)) (in the sum of (4-14)
consider the term in the sum corresponding to i = ε(α); note −α + 1 ≤ ε(α) ≤ α +
m + 1). Now Proposition 4.2 implies π ≤ δ([ν−α+1ρ, να+nρ]) o δ([ναρ, να+mρ], σ).
This fact and π ≤ δ([ν−α−nρ, να+mρ]) o σ imply

sGL(π) ≤ δ([ναρ, να+mρ])

×
α+n+1∑
i=−α+1

δ([νiρ, να+nρ])× δ([ν−i+1ρ, να−1ρ])⊗ σ,
(4-24)

sGL(π) ≤
α+m+1∑
i=−α−n

δ([νiρ, να+mρ])× δ([ν−i+1ρ, να+nρ])⊗ σ.(4-25)

Now (4-24) implies that ν−α−n−1ρ cannot be in the GL-support of irreducible
subquotients of sGL(π). Therefore, we get from (4-25) the following estimate

sGL(δ([ν−α−nρ, να+mρ], σ))

≤
α+n+1∑

i=−α−n

δ([νiρ, να+mρ])× δ([ν−i+1ρ, να+nρ])⊗ σ.
(4-26)

A term in the above sum is either irreducible, or a multiplicity one representation
of length two. Let τ = L(δ(∆1), . . . , δ(∆k)) ⊗ σ be an irreducible subquotient of
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the Jacquet module sGL(π). Now (4-24) implies that if some ∆j ends with να+mρ,
then ναρ must also be in this ∆j . Therefore, (4-26) now implies

sGL(π) ≤
α∑

i=−α−n

δ([νiρ, να+mρ])× δ([ν−i+1ρ, να+nρ])⊗ σ(4-27)

+
α+n+1∑
i=α+1

δ([ν−i+1ρ, να+mρ])× δ([νiρ, να+nρ])⊗ σ

=
α∑

i=−α−n

δ([νiρ, να+mρ])× δ([ν−i+1ρ, να+nρ])⊗ σ

+
−α∑

i=−α−n

δ([νiρ, να+mρ])× δ([ν−i+1ρ, να+nρ])⊗ σ.

=
α∑

i=−α+1

δ([νiρ, να+mρ])× δ([ν−i+1ρ, να+nρ])⊗ σ

+ 2
−α∑

i=−α−n

δ([νiρ, να+mρ])× δ([ν−i+1ρ, να+nρ])⊗ σ.

This estimate and Lemma 4.4 imply (4-23) (note that we have not used (4-12)
in the proof of the estimate, and also not in the proof of (4-23)). Further, the
square integrability of π follows from the estimate, using the Casselman’s square
integrability criterion (Theorem 4.4.6 of [C1]). At the end, Lemma 4.3, (4-12) and
the exactness of the Jacquet functor imply (4-22).

4.8. Remarks. (i) Note that for α = 1/2, the estimates in the above theorem imply

s.s.(δ([ν−1/2−nρ, ν1/2+mρ], σ))

=
1/2∑

i=−1/2−n

δ([νiρ, ν1/2+mρ])× δ([ν−i+1ρ, ν1/2+nρ])⊗ σ.

(ii) Let us consider the groups SO(2q+1, F ) and let χ be a character of GL(1, F ) =
F× such that χ2 is the trivial character. The one-dimensional representation of
SO(1, F ) will be denoted by 1. Let integers n and m satisfy 0 ≤ n < m. Theo-
rem 4.5 and (i) imply that the lengths of the Jacquet modules of representations
δ([ν−1/2−nχ, ν1/2+mχ], 1) and δ([ν−1/2−nχ, ν1/2+mχ]−, 1) with respect to a min-
imal parabolic subgroup are given by

∑n+1
i=0

(
n+m+2

i

)
and

∑n
i=0

(
n+m+2

i

)
, respec-

tively. Suppose that χ is unramified. Then Lemma 3 of [Ro] (or Propositions 2.4 and
2.5 of [C2]) implies that the dimensions of the spaces of the Iwahori fixed vectors in
the representations δ([ν−1/2−nχ, ν1/2+mχ], 1) and δ([ν−1/2−nχ, ν1/2+mχ]−, 1) are
given respectively again by

n+1∑
i=0

(
n + m + 2

i

)
and

n∑
i=0

(
n + m + 2

i

)
.

5. Square integrability, the case α = 0

In this section ρ and σ are as in the previous sections (irreducible unitarizable
cuspidal representations of GL(p, F ) and Sq, respectively). Further, n and m are
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integers satisfying 0 ≤ n < m. We shall assume in this section that ρ o σ reduces
(then ρ ∼= ρ̃) and that ναρ o σ is irreducible for α ∈ Z\{0}. Write ρ o σ = τ1 ⊕ τ2

as a sum of irreducible representations (then τ1 � τ2).

5.1. Lemma. The representation δ([ρ, νρ]τi , σ) is square integrable. It is the only
square integrable subquotient of νρ o τi and we have

µ∗ (δ([ρ, νρ]τi , σ)) = 1⊗ δ([ρ, νρ]τi , σ) + νρ⊗ τi + δ([ρ, νρ])⊗ σ.

Proof. We have an epimorphism νρoτi � L(νρ, τi). Replacing τi by τ̃i in the endo-
morphisms and passing to contragredients, one gets monomorphisms L(νρ, τ̃i)̃ ↪→
ν−1ρoτi. Since L(νρ, τ̃i)̃ ∼= L(νρ, τi), Frobenius reciprocity implies that there exist
epimorphisms

s(p) (L(νρ, τi)) � ν−1ρ⊗ τi.(5-1)

Further, we have an epimorphism δ([ρ, νρ]) o σ � L (δ([ρ, νρ]), σ) . A similar argu-
ment then gives us an epimorphism

sGL (L (δ([ρ, νρ]), σ)) � δ([ν−1ρ, ρ])⊗ σ.(5-2)

Now write
µ∗(νρ o τi) = 1⊗ νρ o τi + [νρ⊗ τi + ν−1ρ⊗ τi + ρ⊗ νρ o σ]

+ [νρ× ρ⊗ σ + ν−1ρ× ρ⊗ σ].
(5-3)

From the above formula, we see that νρ × ρ o σ is a representation of length ≤ 6
because

νρ× ρ o σ = νρ o τ1 ⊕ νρ o τ2.(5-4)

Also, from (5-1) and (5-3), one gets that each L(νρ, τi) has multiplicity one in
νρ× ρ o σ. Further, there is an exact sequence of representations

0 → δ([ρ, νρ]) o σ
α−→ νρ× ρ o σ

β−→ L(νρ, ρ) o σ −→ 0.

We have

µ∗(δ([ρ, νρ]) o σ) = 1⊗ δ([ρ, νρ]) o σ + [νρ⊗ τ1 + νρ⊗ τ2 + ρ⊗ νρ o σ]

+
[
δ([ρ, νρ])⊗ σ + ρ× νρ⊗ σ + δ([ν−1ρ, ρ])⊗ σ

]
.

From (5-2) and the above formula for µ∗ (δ([ρ, νρ]) o σ), we can conclude that
ρ⊗ νρ o σ is a subquotient of s(p) (L (δ([ρ, νρ]), σ)) . Further, write

µ∗ (L(νρ, ρ) o σ) = 1⊗ L(νρ, ρ) o σ

+ [ν−1ρ⊗ τ1 + ν−1ρ⊗ τ2 + ρ⊗ νρ o σ]

+
[
L(νρ, ρ)⊗ σ + ν−1ρ× ρ⊗ σ + L(ρ, ν−1ρ)⊗ σ

]
.

(5-5)

Now, we claim that νρoτi has L (δ([ρ, νρ]), σ) as a subquotient. To prove that, it is
enough to prove that there exists a nonzero intertwining δ([ρ, νρ]) o σ −→ νρ o τi.

We shall show that now. Consider the composition δ([ρ, νρ]) o σ ↪→ νρ× ρ o σ
pri−→

νρ o τi, where pri denotes the projection of νρ × ρ o σ onto νρ o τi with respect
to the decomposition (5-4). Denote it by ϕi. If ϕi 6= 0, then our claim holds.
Therefore, suppose that ϕi = 0. This implies that there exists an epimorphism of
L(ρ, νρ) o σ ∼= (νρ× ρ o σ)

/
(δ([ρ, νρ]) o σ) onto νρ o τi. This implies there is also

an epimorphism on the level of each Jacquet module. Formulas (5-5) and (5-3)
imply that this is not possible. This finishes the proof of our claim.
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We can now conclude that L (δ([ρ, νρ]), σ) has multiplicity two in νρ × ρ o σ.
Further, it is easy to get that the following equality holds in the Grothendieck
group:

L(νρ, ρ) o σ = L(νρ, τ1) + L(νρ, τ2) + L (δ([ρ, νρ]), σ)

(use (5-1), (5-3) and (5-5) to see that we have the first two summands; the last
summand follows from (5-2) and (5-3); the multiplicity one follows from (5-5)).

Note that none of the three irreducible subquotients that we have considered up
to now has νρ⊗ τi for a subquotient in a suitable Jacquet module (see (5-5)).

Consider νρoτi and δ([ρ, νρ])oσ as subrepresentations in νρ×ρoσ. Then, from
the Jacquet modules, one can conclude that their intersection is nonzero. Moreover,
there exists an irreducible subquotient of the intersection which has νρ⊗ τi in the
suitable Jacquet module. This subquotient must be δ([ρ, νρ]τi , σ) by (ii) of Lemma
3.1 and (i) of Proposition 3.2. Then, µ∗ (δ([ρ, νρ]τi , σ)) = 1⊗ δ([ρ, νρ]τi , σ) + νρ⊗
τi + δ([ρ, νρ]) ⊗ σ. This representation is square integrable by the Casselman’s
square integrability criterion. The proof of the lemma is now complete.

In the sequel, we shall also use the following notation:

δ([ρ, ρ]τi , σ) = τi, δ(∅τi , σ) = σ.

5.2. Proposition. Let m ≥ 1. Then:
(i) δ([ρ, νmρ]τi , σ) is square integrable.
(ii) µ∗ (δ([ρ, νmρ]τi , σ)) =

∑m+1
k=0 δ([νkρ, νmρ])⊗ δ([ρ, νk−1ρ]τi , σ).

(iii) We may characterize δ([ρ, νmρ]τi , σ) as a unique irreducible subquotient π of
νmρ × νm−1ρ × · · · × νρ o τi for which δ([ρ, νmρ]) ⊗ σ is a subquotient of
s(p(m+1))(π).

Proof. Since µ∗(τi) = 1⊗ τi + ρ⊗ σ, inductively we get

sGL(νmρ× νm−1ρ× · · · × ν2ρ× νρ o τi)

=
∑

(εi)∈{±1}m

νεmmρ× · · · × νε22ρ× νε1ρ× ρ⊗ σ.

From this, one sees that s(p)m+1(νmρ × νm−1ρ × · · · × ν2ρ × νρ o τi) is a mul-
tiplicity one representation ((p)m+1 is defined in (1-5)). This implies also that
s(p)m(νmρ× νm−1ρ×· · ·× ν2ρ× νρo τi) is a multiplicity one representation. From
this one gets that νmρ× νm−1ρ× · · · × ν2ρ× νρ o τi has a unique irreducible sub-
representation. Since δ([νρ, νmρ])o τi is a subrepresentation of this representation,
we see that the irreducible subrepresentation is δ([ρ, νmρ]τi , σ). In a similar way
one concludes that δ([ρ, νm+1ρ]τi , σ) is a (unique irreducible) subrepresentation of
νm+1ρ o δ([ρ, νmρ]τi , σ), δ([νmρ, νm+1ρ]) o δ([ρ, νm−1ρ]τi , σ), and generally

δ([ρ, νm+1ρ]τi , σ) ↪→ δ([νk+1ρ, νm+1ρ]) o δ([ρ, νkρ]τi , σ), k = 0, 1, . . . , m.(5-6)

Lemma 5.1 and (ii) of Proposition 3.2 imply that the theorem holds for m = 1.
We proceed by induction now. Suppose that the proposition holds up to m ≥ 1.
Consider νm+1ρ o δ([ρ, νmρ]τi , σ). The inductive assumption implies

s.s.
(
sGL

(
νm+1ρ o δ([ρ, νmρ]τi , σ)

))
= νm+1ρ× δ([ρ, νmρ])⊗ σ + ν−(m+1)ρ× δ([ρ, νmρ])⊗ σ.
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Further,

s.s.
(
sGL

(
δ([νmρ, νm+1ρ]) o δ([ρ, νm−1ρ]τi , σ)

))
= δ([ν−(m+1)ρ, ν−mρ])× δ([ρ, νm−1ρ])⊗ σ

+ ν−mρ× νm+1ρ× δ([ρ, νm−1ρ])⊗ σ

+ δ([νmρ, νm+1ρ])× δ([ρ, νm−1ρ])⊗ σ.

From this, we see that the two representations under consideration have exactly one
irreducible subquotient in common and it has δ([ρ, νm+1ρ])⊗σ for the corresponding
Jacquet module. This common irreducible subquotient is δ([ρ, νm+1ρ]τi , σ). This
implies (i). Claim (ii) follows from sGL(δ([ρ, νm+1ρ]τi , σ)) = δ([ρ, νm+1ρ])⊗σ, (5-6)
and the characterization of essentially square integrable representations of general
linear groups by Jacquet modules. Since the multiplicity of δ([ρ, νm+1ρ]) ⊗ σ in
sGL(νm+1ρ× νmρ×· · ·× νρ× τi) is one, we get (iii) from sGL(δ([ρ, νm+1ρ]τi , σ)) =
δ([ρ, νm+1ρ])⊗ σ.

5.3. Lemma. Let π be an irreducible subquotient of the representation
(∏m

i=−n νiρ
)

o σ such that δ([ρ, νmρ])× δ([νρ, νnρ])⊗ σ ≤ sGL(π). Then
(i) π ≤ δ([ν−nρ, νmρ]) o σ.
(ii) δ([ν−nρ, νmρ])⊗ σ ≤ sGL(π).
(iii) π ∼= δ([ν−nρ, νmρ]τi , σ) for some i ∈ {1, 2}.
(iv) The multiplicity of δ([ρ, νmρ])× δ([νρ, νnρ])⊗ σ in sGL(π) is one.

Proof. Lemma 3.3 implies (i). Note that
∑2

i=1 δ([νρ, νnρ]) o δ([ρ, νmρ]τi , σ) ≤(∏m
k=−n νkρ

)
oσ and δ([ρ, νmρ])×δ([νρ, νnρ])⊗σ≤sGL(δ([νρ, νnρ])oδ([ρ, νmρ]τi , σ))

(i = 1, 2). This and Lemma 3.3 imply

π ≤ δ([νρ, νnρ]) o δ([ρ, νmρ]τi0
, σ),(5-7)

for some i0 ∈ {1, 2}. The assumption δ([ρ, νmρ])×δ([νρ, νnρ])⊗σ ≤ sGL(π) implies
δ([νρ, νmρ]) × δ([ρ, νmρ]) ⊗ σ ≤ sGL(δ([νn+1ρ, νmρ]) o π). This and Theorem 2.3
implies δ([ν−mρ, νmρ], σ) ≤ δ([νn+1ρ, νmρ])oπ, which implies, together with (2-11)

δ([ν−mρ, νmρ])⊗ σ ≤ sGL(δ([νn+1ρ, νmρ]) o π).(5-8)

Suppose (ii) does not hold. Note that δ([ν−nρ, νmρ]) ⊗ σ ≤ sGL(δ([νρ, νnρ]) o
δ([ρ, νmρ]τi0

, σ)). Similarly, as in the proof of Lemma 4.1, the previous observation,
(5-7), (5-8) and the assumption that (ii) does not hold, imply

δ([ν−mρ, νmρ])⊗ σ ≤
m+1∑

k=n+1

δ([νkρ, νmρ])× δ([ν−k+1ρ, ν−n−1ρ])

×
(

δ([ρ, νmρ])×
n+1∑
j=1

δ([νjρ, νnρ])× δ([ν−j+1ρ, ν−1ρ])− δ([ν−nρ, νmρ])
)
⊗ σ,

which implies (considering ν−mρ and ν−nρ)

δ([ν−mρ, νmρ])⊗ σ ≤ δ([ν−mρ, ν−n−1ρ])

×
(

δ([ρ, νmρ])× δ([ν−nρ, ν−1ρ])− δ([ν−nρ, νmρ])
)
⊗ σ.

Again, in the same way as in the proof of Lemma 4.1 we see that this is not possible.
This ends the proof of (ii).
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Further, (i), (ii), (i) of Lemma 3.1 and (i) of Proposition 3.2 imply (iii), while
(5-7) implies (iv).

We have proved the following:

5.4. Proposition. Suppose that π is an irreducible subquotient of
(∏α+m

k=−α−n νkρ
)

o σ which satisfies δ([ρ, νmρ]) × δ([νρ, νnρ]) ⊗ σ ≤ sGL(π). Then the multi-
plicity of π in

(∏α+m
k=−α−n νkρ

)
o σ is one, π is a subquotient of the represen-

tation δ([ν−nρ, νmρ]) o σ and π ∼= δ([ν−nρ, νmρ]τi , σ) for some i ∈ {1, 2}. The
multiplicity of δ([ν−nρ, νmρ]) ⊗ σ and δ([ρ, νmρ]) × δ([νρ, νnρ]) ⊗ σ in sGL(π) is
one.

5.5. Theorem. For 0 ≤ n < m we have

sGL(δ([ν−nρ, νmρ]τi , σ)) =
0∑

k=−n

δ([νkρ, νmρ])

× δ([ν−k+1ρ, νnρ])⊗ σ, i = 1, 2,

(5-9)

and δ([ν−nρ, νmρ]τi , σ) are square integrable. (The formula holds also if n = m.)

Proof. Formula (5-9) and the Casselman’s square integrability criterion imply the
square integrability of δ([ν−nρ, νmρ]τi , σ). It remains to prove the formula. If n = 0,
then Proposition 5.2 implies the formula. We shall consider the case 0 < n < m.

First observe δ([νρ, νnρ])× δ([ρ, νmρ])⊗σ ≤ sGL(δ([νρ, νnρ])o δ([ρ, νmρ]τj , σ)),

for j = 1, 2. Now
∑2

j=1 δ([νρ, νnρ]) o δ([ρ, νmρ]τj , σ) ≤
(∏α+m

k=−α−n νkρ
)

o σ,

Lemma 5.3 and Lemma 3.3 imply δ([ν−nρ, νmρ]τi , σ) ≤ δ([νρ, νnρ])oδ([ρ, νmρ]τj , σ)
for some j ∈ {1, 2}. This implies

sGL(δ([ν−nρ, νmρ]τi , σ)) ≤ δ([ρ, νmρ])

×
n+1∑
k=1

δ([νkρ, νnρ])× δ([ν−k+1ρ, ν−1ρ])⊗ σ.
(5-10)

Proposition 3.2 (i) implies

sGL(δ([ν−nρ, νmρ]τi , σ)) ≤
m+1∑
k=−n

δ([νkρ, νmρ])× δ([ν−k+1ρ, νnρ])⊗ σ.(5-11)

Now (5-10) implies that ν−n−1ρ cannot be in the GL-support of irreducible sub-
quotients of sGL(δ([ν−nρ, νmρ]τi , σ). This and (5-11) now imply

sGL(δ([ν−nρ, νmρ]τi , σ)) ≤
n+1∑

k=−n

δ([νkρ, νmρ])× δ([ν−k+1ρ, νnρ])⊗ σ.(5-12)

A term in the above sum is either irreducible, or a multiplicity one representation
of length two. Let π = L(δ(∆1), . . . , δ(∆l))⊗σ be an irreducible subquotient of the
representation sGL(δ([ν−nρ, νmρ]τi , σ)). Now (5-10) implies that if some ∆j ends
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with νmρ, then ρ must also be in this ∆j . Therefore, we can transform (5-12) into

sGL(δ([ν−nρ, νmρ]τi , σ))

≤
0∑

k=−n

δ([νkρ, νmρ])× δ([ν−k+1ρ, νnρ])⊗ σ

+
n+1∑
k=1

δ([ν−k+1ρ, νmρ])× δ([νkρ, νnρ])⊗ σ

=
0∑

k=−n

δ([νkρ, νmρ])× δ([ν−k+1ρ, νnρ])⊗ σ

+
0∑

k=−n

δ([νkρ, νmρ])× δ([ν−k+1ρ, νnρ])⊗ σ

= 2
0∑

k=−n

δ([νkρ, νmρ])× δ([ν−k+1ρ, νnρ])⊗ σ.

(5-13)

Note that all the terms in the sum on the right-hand side of (5-10) have different
GL-supports. Now Lemma 7.1 implies that the right-hand side of (5-10) is a mul-
tiplicity one representation. Therefore, (5-13) implies that in (5-9) the inequality
≤ holds (we could prove this inequality in a different way, similarly as in the proof
of Theorem 4.5).

One proves inductively,

(5-14) δ([ν−nρ, νmρ]τi , σ) ↪→ (νmρ× νm−1ρ× · · · × νρ× ρ)

× (νnρ× νn−1ρ× · · · × ν−k+1ρ)× (ν−1ρ× ν−2ρ× · · · × νkρ)
o σ, k = −n, . . . ,−1, 0,

(see the proof of Lemma 4.4 or (2-6) for a similar proofs; the initial case of induction
i = −n follows from (i) of Proposition 3.2).

Observe that all terms in the sum (5-13) are irreducible and have different GL-
supports. Now, in the same way as in the proof of Lemma 4.4, first applying
Frobenius reciprocity to (5-14), and using this in consideration of GL-supports of
the terms in the sum on the right-hand side of (5-13), we get that the inequality ≥
in (5-9) holds. This completes the proof of (5-9).

6. Example

It is obvious that the condition that δ(∆)oσ reduces is necessary for the existence
of a square integrable subquotient of δ(∆) o σ. It is less clear if the condition
that δ(∆ ∩ ∆̃) o σ reduces is important for construction of the square integrable
representations. The following lemma suggests that this is an important condition.

6.1. Lemma. Let ρ and σ be irreducible unitarizable cuspidal representations of
GL(p, F ) and Sq, respectively. Suppose that ν3/2ρ o σ reduces and ν1/2ρ o σ is
irreducible. Then δ([ν−1/2ρ, ν3/2ρ])oσ reduces, δ([ν−1/2ρ, ν1/2ρ])oσ is irreducible
and ν−1/2ρ× ν1/2ρ× ν3/2ρ o σ does not contain any square integrable subquotient.

Proof. The reducibility of δ([ν−1/2ρ, ν3/2ρ]) o σ follows from the proof of The-
orem 13.2 of [T5]. We can conclude this easily from the following facts. First
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ν1/2ρ×δ([ν1/2ρ, ν3/2ρ])⊗σ has multiplicity one in sGL(ν−1/2ρ×ν1/2ρ×ν3/2ρoσ),
sGL(δ([ν−1/2ρ, ν3/2ρ])oσ) and sGL(δ([ν−1/2ρ, ν1/2ρ])oδ([ν3/2ρ, σ)). Further, con-
sidering δ([ν−3/2ρ, ν1/2ρ])⊗ σ we get

sGL(δ([ν−1/2ρ, ν3/2ρ]) o σ) 6≤ sGL(δ([ν−1/2ρ, ν1/2ρ]) o δ([ν3/2ρ, σ)).

The irreducibility of δ([ν−1/2ρ, ν1/2ρ]) o σ follows from the proof Proposition
4.1 of [T5] (in that proof the irreducibility of ν1/2+kρ o σ for integral k > 1 is
not used). One can also prove this irreducibility easily directly from the facts
s.s.(s(p)(δ([ν−1/2ρ, ν1/2ρ]) o σ)) = 2ν1/2ρ ⊗ ν1/2ρ o σ and ν1/2ρ × ν1/2ρ ⊗ σ ≤
sGL(δ([ν−1/2ρ, ν1/2ρ]) o σ).

Let π be an irreducible square integrable subquotient of ν−1/2ρ×ν1/2ρ×ν3/2ρoσ.
Let νε1ρ⊗ νε2ρ⊗ νε3ρ⊗ σ be any irreducible subquotient of s(p,p,p)(π). Then one
can find s1, s2, s3 ∈ {±1} such that ε1, ε2, ε3 equals s1 1/2, s2 1/2, s3 3/2 up to the
word ordering. Now:

(1) The Casselman’s square integrability criterion implies s3 = 1 and ε1 > 0.
(2) We have s.s.(sGL(δ([ν−1/2ρ, ν1/2ρ]) o δ(ν3/2ρ, σ))) = 2δ([ν−1/2ρ, ν1/2ρ]) ×

ν3/2ρ⊗ σ + ν1/2ρ× ν1/2ρ× ν3/2ρ⊗ σ. Further, each irreducible subquotient
of δ([ν−1/2ρ, ν1/2ρ])o δ(ν3/2ρ, σ) is tempered, but it is not square integrable.

(3) Note s.s.(sGL(ν−1/2ρ × ν1/2ρ × ν3/2ρ o σ)) − s.s.(sGL(δ([ν−1/2ρ, ν1/2ρ]) o
δ(ν3/2ρ, σ))) ≤ ∑(k1,k2,k3)∈{±1}3\(1,1,1) νk1 1/2ρ × νk2 1/2ρ× νk3 3/2ρ ⊗ σ (use
the formula in the proof of Lemma 3.3 for s.s.(sGL(ν−1/2ρ×ν1/2ρ×ν3/2ρoσ)),
and ν1/2ρ× ν1/2ρ× ν3/2ρ⊗ σ ≤ sGL(δ([ν−1/2ρ, ν1/2ρ]) o δ(ν3/2ρ, σ))).

(4) Suppose ε1, ε2, ε3 are all positive. Then (3) implies that π is a subquotient
of the representation δ([ν−1/2ρ, ν1/2ρ]) o δ(ν3/2ρ, σ). This contradicts the
square integrability of π (see (2)). Thus, at least one εi is negative.

(5) Let us choose an irreducible subquotient νε1ρ⊗ νε2ρ⊗ νε3ρ⊗ σ of s(p,p,p)(π)
such that π ↪→ νε1ρ×νε2ρ×νε3ρoσ (we can do it by Corollary 7.2.2 of [C1]).
Conversely, if π ↪→ νε′1ρ× νε′2ρ× νε′3ρ o σ, then Frobenius reciprocity implies
that νε′1ρ⊗ νε′2ρ⊗ νε′3ρ⊗ σ is a quotient of s(p,p,p)(π). Now (1) implies that
we have the following three possibilities:

(6) ε3 = 3/2 and ε1 = 1/2. Now (4) implies ε2 = −1/2. Applying Frobenius
reciprocity, we get that this contradicts the Casselman’s square integrability
criterion, since π was supposed to be square integrable.

(7) ε2 = 3/2 and ε1 = 1/2. Again (4) implies ε3 = −1/2. Thus π ↪→ ν1/2ρ ×
ν3/2ρ× ν−1/2ρ o σ ∼= ν1/2ρ× ν3/2ρ× ν1/2ρ o σ, which contradicts (4).

(8) ε1 = 3/2. Now νε1ρ× νε2ρ× νε3ρo σ ∼= νε1ρ× νε2ρ× ν−ε3ρo σ. This and (4)
imply ε2 = −1/2. Thus π ↪→ ν3/2ρ × ν−1/2ρ× νε3ρ o σ ∼= ν−1/2ρ× ν3/2ρ ×
νε3ρ o σ, which contradicts to (1).

The proof is now complete.

7. Appendix

In this section we shall prove one very simple (and probably very well known)
fact about representations of general linear groups, for which we do not know a
suitable reference.

7.1. Lemma. Let ∆1, . . . , ∆n be segments in irreducible cuspidal representations
of general linear groups. Suppose n ≤ 3. Then δ(∆1)×· · ·× δ(∆n) is a multiplicity
one representation.
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Proof. Using either Theorem 2.3 and Corollary 3.9 of [A], or the fifth section of
[ScSt], one directly gets that for the lemma it is enough to prove that

〈∆1〉 × · · · × 〈∆n〉 is a multiplicity one representation,(7-1)

where 〈∆〉 denotes the representations introduced in [Z]. In the rest of this proof
we shall use freely the notation introduced in [Z].

Let X be the set of all multisegments a such that a ≤ (∆1, ∆2, . . . , ∆n).

(1) It is well known that if a is minimal or maximal in X , then the multiplicity of
〈a〉 is one (see Section 1). Therefore, (7-1) holds if card (X) ≤ 2. This implies
that (7-1) holds if n ≤ 2.

In the rest of the proof we assume n = 3.

(2) If two of the segments coincide, then Card (X) ≤ 2, and (7-1) holds by (1).
(3) Suppose that each ∆i consists of a single (irreducible cuspidal) representation.

Then (7-1) holds (if these cuspidal representations are different, then 〈∆1〉 ×
· · · × 〈∆3〉 is a regular representation; otherwise (2) implies (7-1)).

Now we shall proceed by induction on the total number k of the representations
in the support of 〈∆1〉 × · · · × 〈∆3〉 (counted with multiplicities). Clearly, k ≥ 3.
For k = 3 the lemma holds by (3).

Let k > 3 and suppose that (7-1) holds for k′ < k. Recall that the derivative is

D
(

3∏
i=1

〈∆i〉
)

=
3∏

i=1

(〈∆i〉+ 〈∆−
i 〉).(7-2)

(4) If all three segments have different ends, then looking at the multiplicity of the
highest derivatives of any irreducible subquotient, we get from the inductive
assumption that the highest derivative has multiplicity one in the derivative
(since the assumption on the ends and the inductive assumption imply that
the multiplicity of any irreducible representation of a general linear group in∏3

i=1(〈∆i〉+ 〈∆−
i 〉)−

∏3
i=1〈∆i〉 is either 0 or 1). This implies (7-1).

(5) If all three segments have different beginnings, then passing to contragredi-
ents, we get different ends. From (4) we now easily get that (7-1) holds in
this situation.

(6) If ∆1∩∆2∩∆3 6= ∅, then considering the highest derivatives of the irreducible
subquotients, the inductive assumption implies the multiplicity one of all irre-
ducible subquotients (since then all the highest derivatives of the irreducible
subquotients are subquotients of

∏3
i=1〈∆−

i 〉, and this is a multiplicity one
representation by the inductive assumption). Thus, (7-1) holds.

(7) If all three segments have the same beginnings, or the same ends, then
card (X) = 1, and (7-1) holds by (1).

It remains to consider the case of different segments, when exactly two of the
segments have the same beginnings, exactly two of them have the same ends, their
intersection is empty and card (X) > 1. One easily sees that for such segments,
there exists an irreducible cuspidal representation ρ of some GL(p, F ), a, b ∈ Z
satisfying 0 ≤ a < b, such that the segments ∆i are segments [ρ, νbρ], [ρ, νaρ] and
[νa+1ρ, νbρ] up to an order. Then Card (X) = 2, and therefore (7-1) holds by (1).
This ends the proof of (7-1), and the proof of the lemma is now complete.
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Math. Soc. 347 (1995), 2179-2189 (and Erratum, Trans. Amer. Math. Soc. 348 (1996),
4687-4690). MR 95i:22025; MR 97c:22019

[C1] W. Casselman, Introduction to the theory of admissible representations of p-adic re-
ductive groups, preprint.

[C2] , The unramified principal series of p-adic groups I. The spherical function,
Compositio Math. 40 (3) (1980), 387-406. MR 83a:22018

[GP] B.H. Gross and D. Prasad, On the decomposition of a representation of SOn when
restricted to SOn−1, Canad. J. Math. 44 (5) (1992), 974-1002. MR 93j:22031

[KL] D. Kazhdan and G. Lusztig, Proof of the Deligne-Langlands conjecture for Hecke alge-
bras, Invent. Math. 87 (1987), 153-215. MR 88d:11121

[Moe] C. Mœglin, Letter, February 1997.
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