## Square integrable representations of classical p-adic groups corresponding to segments

HTML articles powered by AMS MathViewer

- by Marko Tadić PDF
- Represent. Theory
**3**(1999), 58-89 Request permission

## Abstract:

Let $S_n$ be either the group $Sp(n)$ or $SO(2n+1)$ over a $p$-adic field $F$. Then Levi factors of maximal parabolic subgroups are (isomorphic to) direct products of $GL(k)$ and $S_{n-k}$, with $1\leq k\leq n$. The square integrable representations which we define and study in this paper (and prove their square integrability), are subquotients of reducible representations Ind$_P^{S_n}(\delta \otimes \sigma ),$ where $\delta$ is an essentially square integrable representation of $GL(k)$, and $\sigma$ is a cuspidal representation of $S_{n-k}$. These square integrable representations play an important role in a construction of more general square integrable representations.## References

- Anne-Marie Aubert,
*Dualité dans le groupe de Grothendieck de la catégorie des représentations lisses de longueur finie d’un groupe réductif $p$-adique*, Trans. Amer. Math. Soc.**347**(1995), no. 6, 2179–2189 (French, with English summary). MR**1285969**, DOI 10.1090/S0002-9947-1995-1285969-0 - W. Casselman,
*Introduction to the theory of admissible representations of $p$-adic reductive groups*, preprint. - W. Casselman,
*The unramified principal series of ${\mathfrak {p}}$-adic groups. I. The spherical function*, Compositio Math.**40**(1980), no. 3, 387–406. MR**571057** - Benedict H. Gross and Dipendra Prasad,
*On the decomposition of a representation of $\textrm {SO}_n$ when restricted to $\textrm {SO}_{n-1}$*, Canad. J. Math.**44**(1992), no. 5, 974–1002. MR**1186476**, DOI 10.4153/CJM-1992-060-8 - David Kazhdan and George Lusztig,
*Proof of the Deligne-Langlands conjecture for Hecke algebras*, Invent. Math.**87**(1987), no. 1, 153–215. MR**862716**, DOI 10.1007/BF01389157 - C. Mœglin, Letter, February 1997.
- Goran Muić,
*Some results on square integrable representations; irreducibility of standard representations*, Internat. Math. Res. Notices**14**(1998), 705–726. MR**1637097**, DOI 10.1155/S1073792898000427 - —,
*On generic irreducible representations of $Sp(n,F)$ and $SO(2n+1,F)$*, Glasnik Mat.**33(53)**(1998), 19-31. - F. Murnaghan, and J. Repka,
*Reducibility of some induced representations of split classical $p$-adic groups*, Compositio Math.**114**(1998), 263–313. - Mark Reeder,
*Hecke algebras and harmonic analysis on $p$-adic groups*, Amer. J. Math.**119**(1997), no. 1, 225–249. MR**1428064**, DOI 10.1353/ajm.1997.0005 - François Rodier,
*Sur les représentations non ramifiées des groupes réductifs $p$-adiques; l’exemple de $\textrm {GSp}(4)$*, Bull. Soc. Math. France**116**(1988), no. 1, 15–42 (French, with English summary). MR**946277**, DOI 10.24033/bsmf.2088 - Peter Schneider and Ulrich Stuhler,
*Representation theory and sheaves on the Bruhat-Tits building*, Inst. Hautes Études Sci. Publ. Math.**85**(1997), 97–191. MR**1471867**, DOI 10.1007/BF02699536 - Freydoon Shahidi,
*A proof of Langlands’ conjecture on Plancherel measures; complementary series for $p$-adic groups*, Ann. of Math. (2)**132**(1990), no. 2, 273–330. MR**1070599**, DOI 10.2307/1971524 - Freydoon Shahidi,
*Twisted endoscopy and reducibility of induced representations for $p$-adic groups*, Duke Math. J.**66**(1992), no. 1, 1–41. MR**1159430**, DOI 10.1215/S0012-7094-92-06601-4 - Allan J. Silberger,
*Discrete series and classification for $p$-adic groups. I*, Amer. J. Math.**103**(1981), no. 6, 1241–1321. MR**636960**, DOI 10.2307/2374232 - Marko Tadić,
*Induced representations of $\textrm {GL}(n,A)$ for $p$-adic division algebras $A$*, J. Reine Angew. Math.**405**(1990), 48–77. MR**1040995**, DOI 10.1515/crll.1990.405.48 - Marko Tadić,
*Representations of $p$-adic symplectic groups*, Compositio Math.**90**(1994), no. 2, 123–181. MR**1266251** - Marko Tadić,
*Structure arising from induction and Jacquet modules of representations of classical $p$-adic groups*, J. Algebra**177**(1995), no. 1, 1–33. MR**1356358**, DOI 10.1006/jabr.1995.1284 - —,
*On regular square integrable representations of $p$-adic groups*, Amer. J. Math.**120**(1) (1998), 159-210. - —,
*On reducibility of parabolic induction*, Israel J. Math.**107**(1998), 29–91. - —,
*A family of square integrable representations of classical $p$-adic groups*, preprint (1998). - David A. Vogan Jr.,
*The local Langlands conjecture*, Representation theory of groups and algebras, Contemp. Math., vol. 145, Amer. Math. Soc., Providence, RI, 1993, pp. 305–379. MR**1216197**, DOI 10.1090/conm/145/1216197 - A. V. Zelevinsky,
*Induced representations of reductive ${\mathfrak {p}}$-adic groups. II. On irreducible representations of $\textrm {GL}(n)$*, Ann. Sci. École Norm. Sup. (4)**13**(1980), no. 2, 165–210. MR**584084**, DOI 10.24033/asens.1379

## Additional Information

**Marko Tadić**- Affiliation: Department of Mathematics, University of Zagreb, Bijenička 30, 10000 Zagreb, Croatia
- ORCID: 0000-0002-6087-3765
- Email: tadic@math.hr
- Received by editor(s): July 17, 1998
- Received by editor(s) in revised form: December 6, 1998
- Published electronically: June 9, 1999
- © Copyright 1999 American Mathematical Society
- Journal: Represent. Theory
**3**(1999), 58-89 - MSC (1991): Primary 22E50
- DOI: https://doi.org/10.1090/S1088-4165-99-00071-0
- MathSciNet review: 1698200