Construction of arbitrary Kazhdan-Lusztig polynomials in symmetric groups
HTML articles powered by AMS MathViewer
- by Patrick Polo
- Represent. Theory 3 (1999), 90-104
- DOI: https://doi.org/10.1090/S1088-4165-99-00074-6
- Published electronically: June 22, 1999
- PDF | Request permission
Abstract:
To each polynomial $P$ with integral nonnegative coefficients and constant term equal to $1$, of degree $d$, we associate a certain pair of elements $(y,w)$ in the symmetric group $S_n$, where $n = 1 + d + P(1)$, such that the Kazhdan-Lusztig polynomial $P_{y,w}$ equals $P$. This pair satisfies $\ell (w) - \ell (y) = 2d + P(1) - 1$, where $\ell (w)$ denotes the number of inversions of $w$.References
- H. H. Andersen, Schubert varieties and Demazure’s character formula, Invent. Math. 79 (1985), no. 3, 611–618. MR 782239, DOI 10.1007/BF01388527
- A. A. Beĭlinson, J. Bernstein, and P. Deligne, Faisceaux pervers, Analysis and topology on singular spaces, I (Luminy, 1981) Astérisque, vol. 100, Soc. Math. France, Paris, 1982, pp. 5–171 (French). MR 751966
- Brian D. Boe, Kazhdan-Lusztig polynomials for Hermitian symmetric spaces, Trans. Amer. Math. Soc. 309 (1988), no. 1, 279–294. MR 957071, DOI 10.1090/S0002-9947-1988-0957071-2
- M. Brion and P. Polo, Generic singularities of certain Schubert varieties, Math. Z. 231 (1999), 301-324.
- Vinay V. Deodhar, Local Poincaré duality and nonsingularity of Schubert varieties, Comm. Algebra 13 (1985), no. 6, 1379–1388. MR 788771, DOI 10.1080/00927878508823227
- Vinay V. Deodhar, A combinatorial setting for questions in Kazhdan-Lusztig theory, Geom. Dedicata 36 (1990), no. 1, 95–119. MR 1065215, DOI 10.1007/BF00181467
- F. Du Cloux, program “Coxeter" (available at www.desargues.univ-lyon1.fr/home/ ducloux/coxeter.html).
- Mark Goresky and Robert MacPherson, Intersection homology. II, Invent. Math. 72 (1983), no. 1, 77–129. MR 696691, DOI 10.1007/BF01389130
- Ronald S. Irving, The socle filtration of a Verma module, Ann. Sci. École Norm. Sup. (4) 21 (1988), no. 1, 47–65. MR 944101, DOI 10.24033/asens.1550
- Birger Iversen, Cohomology of sheaves, Universitext, Springer-Verlag, Berlin, 1986. MR 842190, DOI 10.1007/978-3-642-82783-9
- David Kazhdan and George Lusztig, Representations of Coxeter groups and Hecke algebras, Invent. Math. 53 (1979), no. 2, 165–184. MR 560412, DOI 10.1007/BF01390031
- David Kazhdan and George Lusztig, Schubert varieties and Poincaré duality, Geometry of the Laplace operator (Proc. Sympos. Pure Math., Univ. Hawaii, Honolulu, Hawaii, 1979) Proc. Sympos. Pure Math., XXXVI, Amer. Math. Soc., Providence, R.I., 1980, pp. 185–203. MR 573434, DOI 10.1090/pspum/036/573434
- Alain Lascoux and Marcel-Paul Schützenberger, Polynômes de Kazhdan & Lusztig pour les grassmanniennes, Young tableaux and Schur functors in algebra and geometry (Toruń, 1980), Astérisque, vol. 87, Soc. Math. France, Paris, 1981, pp. 249–266 (French). MR 646823
- S. Ramanan and A. Ramanathan, Projective normality of flag varieties and Schubert varieties, Invent. Math. 79 (1985), no. 2, 217–224. MR 778124, DOI 10.1007/BF01388970
- C. S. Seshadri, Line bundles on Schubert varieties, Vector bundles on algebraic varieties (Bombay, 1984) Tata Inst. Fund. Res. Stud. Math., vol. 11, Tata Inst. Fund. Res., Bombay, 1987, pp. 499–528. MR 893610
- Jean-Luc Brylinski, (Co)-homologie d’intersection et faisceaux pervers, Bourbaki Seminar, Vol. 1981/1982, Astérisque, vol. 92, Soc. Math. France, Paris, 1982, pp. 129–157 (French). MR 689529
- A. Zelevinsky, Small resolutions of singularities of Schubert varieties, Funct. Anal. Appl. 17 (1982), 142-144.
Bibliographic Information
- Patrick Polo
- Affiliation: CNRS, UMR 7539, Institut Galilée, Département de mathématiques, Université Paris-Nord, 93430 Villetaneuse, France
- Email: polo@math.univ-paris13.fr
- Received by editor(s): December 11, 1998
- Received by editor(s) in revised form: April 30, 1999
- Published electronically: June 22, 1999
- © Copyright 1999 American Mathematical Society
- Journal: Represent. Theory 3 (1999), 90-104
- MSC (1991): Primary 14M15; Secondary 20F55, 20G15
- DOI: https://doi.org/10.1090/S1088-4165-99-00074-6
- MathSciNet review: 1698201