Admissible nilpotent coadjoint orbits of p-adic reductive Lie groups
HTML articles powered by AMS MathViewer
- by Monica Nevins
- Represent. Theory 3 (1999), 105-126
- DOI: https://doi.org/10.1090/S1088-4165-99-00072-2
- Published electronically: June 22, 1999
- PDF | Request permission
Abstract:
The orbit method conjectures a close relationship between the set of irreducible unitary representations of a Lie group $G$, and admissible coadjoint orbits in the dual of the Lie algebra. We define admissibility for nilpotent coadjoint orbits of $p$-adic reductive Lie groups, and compute the set of admissible orbits for a range of examples. We find that for unitary, symplectic, orthogonal, general linear and special linear groups over $p$-adic fields, the admissible nilpotent orbits coincide with the so-called special orbits defined by Lusztig and Spaltenstein in connection with the Springer correspondence.References
- Jeffrey Adams, Extensions of Tori in $SL(2)$, preprint, 1998.
- James Arthur, Unipotent automorphic representations: conjectures, AstĂ©risque 171-172 (1989), 13â71. Orbites unipotentes et reprĂ©sentations, II. MR 1021499
- Roger W. Carter, Finite groups of Lie type, Wiley Classics Library, John Wiley & Sons, Ltd., Chichester, 1993. Conjugacy classes and complex characters; Reprint of the 1985 original; A Wiley-Interscience Publication. MR 1266626
- P. Hebroni, Sur les inverses des Ă©lĂ©ments dĂ©rivables dans un anneau abstrait, C. R. Acad. Sci. Paris 209 (1939), 285â287 (French). MR 14
- David H. Collingwood and William M. McGovern, Nilpotent orbits in semisimple Lie algebras, Van Nostrand Reinhold Mathematics Series, Van Nostrand Reinhold Co., New York, 1993. MR 1251060
- Michel Duflo, Construction de reprĂ©sentations unitaires dâun groupe de Lie, Harmonic analysis and group representations, Liguori, Naples, 1982, pp. 129â221 (French, with English summary). MR 777341
- Michael Harris, Stephen S. Kudla, and William J. Sweet, Theta dichotomy for unitary groups, J. Amer. Math. Soc. 9 (1996), no. 4, 941â1004. MR 1327161, DOI 10.1090/S0894-0347-96-00198-1
- I. B. Fesenko and S. V. Vostokov, Local fields and their extensions, Translations of Mathematical Monographs, vol. 121, American Mathematical Society, Providence, RI, 1993. A constructive approach; With a foreword by I. R. Shafarevich. MR 1218392, DOI 10.1090/mmono/121
- Y. Flicker, D. Kazhdan, and G. Savin, Explicit realization of a metaplectic representation, J. Analyse Math. 55 (1990), 17â39. MR 1094709, DOI 10.1007/BF02789195
- A. A. Kirillov, Unitary representations of nilpotent Lie groups, Uspehi Mat. Nauk 17 (1962), no. 4 (106), 57â110 (Russian). MR 0142001, DOI 10.1070/RM1962v017n04ABEH004118
- David Kazhdan, The minimal representation of $D_4$, Operator algebras, unitary representations, enveloping algebras, and invariant theory (Paris, 1989) Progr. Math., vol. 92, BirkhĂ€user Boston, Boston, MA, 1990, pp. 125â158. MR 1103589
- D. Kazhdan and G. Savin, The smallest representation of simply laced groups, Festschrift in honor of I. I. Piatetski-Shapiro on the occasion of his sixtieth birthday, Part I (Ramat Aviv, 1989) Israel Math. Conf. Proc., vol. 2, Weizmann, Jerusalem, 1990, pp. 209â223. MR 1159103
- GĂ©rard Lion and Patrice Perrin, Extension des reprĂ©sentations de groupes unipotents $p$-adiques. Calculs dâobstructions, Noncommutative harmonic analysis and Lie groups (Marseille, 1980) Lecture Notes in Math., vol. 880, Springer, Berlin-New York, 1981, pp. 337â356 (French). MR 644839, DOI 10.1007/BFb0090415
- Gérard Lion and MichÚle Vergne, The Weil representation, Maslov index and theta series, Progress in Mathematics, vol. 6, BirkhÀuser, Boston, Mass., 1980. MR 573448, DOI 10.1016/0012-365x(79)90168-7
- G. Lusztig, A class of irreducible representations of a Weyl group, Nederl. Akad. Wetensch. Indag. Math. 41 (1979), no. 3, 323â335. MR 546372, DOI 10.1016/1385-7258(79)90036-2
- George Lusztig, Characters of reductive groups over a finite field, Annals of Mathematics Studies, vol. 107, Princeton University Press, Princeton, NJ, 1984. MR 742472, DOI 10.1515/9781400881772
- C. MĆglin, Front dâonde des reprĂ©sentations des groupes classiques $p$-adiques, Amer. J. Math. 118 (1996), no. 6, 1313â1346 (French, with French summary). MR 1420926, DOI 10.1353/ajm.1996.0051
- Colette MĆglin, Marie-France VignĂ©ras, and Jean-Loup Waldspurger, Correspondances de Howe sur un corps $p$-adique, Lecture Notes in Mathematics, vol. 1291, Springer-Verlag, Berlin, 1987 (French). MR 1041060, DOI 10.1007/BFb0082712
- Calvin C. Moore, Decomposition of unitary representations defined by discrete subgroups of nilpotent groups, Ann. of Math. (2) 82 (1965), 146â182. MR 181701, DOI 10.2307/1970567
- JĂŒrgen Neukirch, Class field theory, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 280, Springer-Verlag, Berlin, 1986. MR 819231, DOI 10.1007/978-3-642-82465-4
- Patrice Perrin, ReprĂ©sentations de Schrödinger, indice de Maslov et groupe metaplectique, Noncommutative harmonic analysis and Lie groups (Marseille, 1980) Lecture Notes in Math., vol. 880, Springer, Berlin-New York, 1981, pp. 370â407 (French). MR 644841, DOI 10.1007/BFb0090417
- V.P. Platonov, The Problem of Strong Approximation and the Kneser-Tits Conjecture, Math. USSR Izv. 3 (1969), 1139â1147; Addendum: ibid 4 (1970), 784â786.
- Dipendra Prasad, Theta correspondence for Unitary Groups, preprint (1997).
- R. Ranga Rao, On some explicit formulas in the theory of Weil representation, Pacific J. Math. 157 (1993), no. 2, 335â371. MR 1197062, DOI 10.2140/pjm.1993.157.335
- Gordan Savin, An analogue of the Weil representation for $G_2$, J. Reine Angew. Math. 434 (1993), 115â126. MR 1195692, DOI 10.1515/crll.1993.434.115
- James O. Schwarz, The Determination of the Admissible Nilpotent Orbits in Real Classical Groups, Ph.D. thesis, MIT, 1987.
- Nicolas Spaltenstein, Classes unipotentes et sous-groupes de Borel, Lecture Notes in Mathematics, vol. 946, Springer-Verlag, Berlin-New York, 1982 (French). MR 672610, DOI 10.1007/BFb0096302
- Pierre Torasso, MĂ©thode des orbites de Kirillov-Duflo et reprĂ©sentations minimales des groupes simples sur un corps local de caractĂ©ristique nulle, Duke Math. J. 90 (1997), no. 2, 261â377 (French). MR 1484858, DOI 10.1215/S0012-7094-97-09009-8
- David A. Vogan Jr., Unitary representations of reductive Lie groups, Annals of Mathematics Studies, vol. 118, Princeton University Press, Princeton, NJ, 1987. MR 908078, DOI 10.1515/9781400882380
- David A. Vogan Jr., Unitary representations of reductive Lie groups and the orbit method, New developments in Lie theory and their applications (CĂłrdoba, 1989) Progr. Math., vol. 105, BirkhĂ€user Boston, Boston, MA, 1992, pp. 87â114. Based on notes prepared by Jorge Vargas. MR 1190737, DOI 10.1007/978-1-4612-2978-0_{5}
- David A. Vogan Jr., Associated varieties and unipotent representations, Harmonic analysis on reductive groups (Brunswick, ME, 1989) Progr. Math., vol. 101, BirkhĂ€user Boston, Boston, MA, 1991, pp. 315â388. MR 1168491, DOI 10.1007/978-1-4612-0455-8_{1}7
- David A. Vogan Jr., The unitary dual of $G_2$, Invent. Math. 116 (1994), no. 1-3, 677â791. MR 1253210, DOI 10.1007/BF01231578
- David A. Vogan, Jr., The Method of Coadjoint Orbits for Real Reductive Groups, IAS/Park City Mathematics Series 6, (1998).
- AndrĂ© Weil, Sur certains groupes dâopĂ©rateurs unitaires, Acta Math. 111 (1964), 143â211 (French). MR 165033, DOI 10.1007/BF02391012
Bibliographic Information
- Monica Nevins
- Affiliation: Department of Mathematics, University of Alberta, Edmonton, AB T6G 2G1, Canada
- Email: mnevins@alum.mit.edu
- Received by editor(s): December 7, 1998
- Received by editor(s) in revised form: February 2, 1999
- Published electronically: June 22, 1999
- Additional Notes: Ph.D. research supported by a teaching assistantship in the Department of Mathematics at MIT, and by an âNSERC 1967â Scholarship from the Natural Sciences and Engineering Research Council of Canada. Postdoctoral research supported by the Killam Trust
- © Copyright 1999 American Mathematical Society
- Journal: Represent. Theory 3 (1999), 105-126
- MSC (1991): Primary 20G25; Secondary 22E50
- DOI: https://doi.org/10.1090/S1088-4165-99-00072-2
- MathSciNet review: 1698202