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KOSZUL DUALITY FOR PARABOLIC
AND SINGULAR CATEGORY O
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Abstract. This paper deals with a generalization of the “Koszul duality the-
orem” for the Bernstein-Gelfand-Gelfand category O over a complex semi-
simple Lie-algebra, established by Beilinson, Ginzburg and Soergel in Koszul
duality patterns in representation theory, J. Amer. Math. Soc. 9 (1996), 473–
527. In that paper it was proved that any “block” in O, determined by an
integral, but possibly singular weight, is Koszul (i.e. equivalent to the category
of finitely generated modules over some Koszul ring) and, moreover, that the
“Koszul dual” of such a block is isomorphic to a “parabolic subcategory” of
the trivial block in O.

We extend these results to prove that a parabolic subcategory of an integral
and (possibly) singular block in O is Koszul and we also calculate the Koszul
dual of such a category.

1. Introduction

(Cf. the subsection about category O in section 2.) Let g ⊃ b ⊃ h be a complex
semi-simple Lie-algebra, a Borel subalgebra and a Cartan subalgebra. Let φ, ψ ∈ h∗

be integral and dominant. Let Oφ be the block in the category O defined in [BGG1]
corresponding to the weight φ. Let q(ψ) ⊃ b be the parabolic subalgebra of g

corresponding to ψ and denote by Oψφ the subcategory of Oφ whose objects are
locally finite over q(ψ). Denote by Rψφ the endomorphism ring of a (minimal)
projective generator of Oψφ . The conclusion of this paper is the parabolic and
singular-singular and parabolic Koszul duality:

Theorem 1.1. The ring Rψφ is Koszul. Its Koszul dual (Rψφ )! is isomorphic to
Rφ−w0ψ

.

This theorem generalizes the main result of [BGS], Theorem 1.1.3, where Rφ0 ∼=
(R0

φ)
! is proved. My proof depends heavily on their results but may have the ad-

vantage that I am (once an isomorphism (R0
0)

! ∼= R0
0 is chosen) able to construct

the isomorphism and not just prove its existence as in [BGS]. Actually, this iso-
morphism is induced by “translation onto the wall”.

The methods used in this paper are elementary except for the proof of Proposi-
tion 3.5 where some theory of perverse sheaves is needed.

At the end of section 2 we consider as an example — in order to give the non-
expert reader a feeling for these things — the sl(2,C) case.
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Motivation. Let me start by mentioning some applications of the Koszul duality of
[BGS]. First of all, the fact that O0 is Koszul and selfdual implies ([BGS]) that the
Kazhdan-Lusztig conjecture, which is one of the deepest results in representation
theory, holds for this category. However, there is no way to prove the Koszulity
of O0 without using the Kazhdan-Lusztig conjectures. One could think of the
Koszulity property as a strengthening of the Kazhdan-Lusztig conjectures.

The Koszul duality theorem for Oφ enables us to solve some questions working
with the Koszul dual category Oq(φ)

0 . A famous theorem of Soergel ([Soe2]) states
that the ext groups between a Verma module and a simple module vanish in every
second degree. From the standpoint of geometry, which applies to Oq(φ)

0 (but not
to Oφ) — via D-modules on the flag variety of G/Q, where G is the Lie-group
corresponding to g and Q is the subgroup with LieQ = q — it is not so hard
to show that this theorem actually holds for Oq(φ)

0 . One then deduces Soergel’s
theorem from the Koszul duality theorem.

A possible important application of the Koszul duality theorem in this pa-
per is the following: There exists an equivalence between the category of finite-
dimensional representations of a quantum group at a root of unity and a parabolic
category O of the corresponding affine Kac-Moody algebra; cf. [KL1], [KL2]. So in
order to establish a singular-parabolic duality for the category of finite-dimensional
representations of the quantum group we need a parabolic and singular-singular
and parabolic duality for O of the Kac-Moody algebra. Theorem 1.1 indicates that
such a duality should exist.

2. Review of category O and Koszul rings

Koszul rings. We refer to [BGS] for a detailed review of the theory of Koszul
rings. Here we just recall

Definition 2.1. Let R =
⊕

i≥0Ri be a positively graded ring with R0 semi-simple
and put R+ =

⊕
i>0Ri. R is called Koszul if the right module R0

∼= R/R+ admits
a graded projective resolution P • � R0 such that P i is generated by its component
P ii in degree i.

For a positively graded ring R put R! := ExtR(R0, R0). This has the structure
of a graded ring, with (R!)i = ExtiR(R0, R0) and multiplication given by the cup-
product. If R is Koszul, we call R! the Koszul dual of R. Denote by extiR( , )
extensions in the category of graded (left) R-modules and for a graded R-module
M and an integer j define the graded R-module M〈j〉 by M〈j〉i = Mi−j . Let us
say that a graded R-module M is pure of weight i if M = M−i.

Proposition 2.2. Let R be a positively graded ring with R0 semi-simple. Then
R is Koszul iff extiR(R0, R0〈j〉) = 0 whenever i 6= j. If R is Koszul, then R is
generated in degree 1 over its degree 0 part and has relations only in degree 2. Then
also R! is Koszul and, if in addition R1 is right finitely generated over R0, (R!)! ∼= R
canonically.

Remark 2.3. (i) Each ring R considered in this paper is finite-dimensional over C
so the condition R1 is right finitely generated over R0 is automatically fulfilled.

(ii) The standard definition of R! is ExtR(R0, R0)opp. However, the category O
defined below admits a duality (e.g. [BGG1]) which restricts to a duality on each
subcategory of O we shall consider. This implies that the endomorphism ring of
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a projective generator in such a category is isomorphic to its own opposite ring
and each ring R in this paper is either an endomorphism ring of this type or the
ext-algebra of such a ring, hence Ropp ∼= R. Thus, our definition of R! coincides
with the standard definition.

Anyway, Proposition 2.2 holds with our definition of R! as well as with the
standard definition.

A convention. Each ring R under consideration in this paper will be indexed by
a pair of weights in h∗, e.g. R = Rφ0 . In order to not confuse the index 0 ∈ N
referring to grading degree with index 0 ∈ h∗ referring to weight we shall in the
following always write (R)i when referring to grading degree i ∈ N, e.g. (Rφ0 )0.

Category O. Let g ⊃ b ⊃ h be a semi-simple Lie-algebra, a Borel subalgebra and
a Cartan subalgebra and let U(g) be the enveloping algebra of g. Let R be the root-
system, R+ the positive roots, B ⊂ R+ the basis, R− := −R+ and let (W,S) be the
corresponding Coxeter-system and let w0 ∈W be the longest element. Let ρ denote
the half-sum of the positive roots; for φ ∈ h∗, w ∈W we put w · φ := w(φ+ ρ)− ρ.
Denote by Hα the coroot corresponding to α ∈ R.

In this paper each weight φ ∈ h∗ is assumed to be integral, i.e. φ(Hα) ∈ Z, ∀α ∈
B. φ is called dominant if φ(Hα) ≥ −1, ∀α ∈ B and anti-dominant if φ(Hα) ≤
−1, ∀α ∈ B. Denote by L(φ) the simple module with highest weight φ. (This
terminology differs from that of [BGG1]; they denote by Lφ the simple module of
highest weight φ− ρ.)

Let O be the category of all finitely generated U(g)-modules which are locally
finite over b and semi-simple over h. Each object in O has finite length and O has
enough projectives, e.g. [BGG1]; denote by P (φ) a projective cover of L(φ) in O.
Let Oφ be the subcategory, so called block, of O whose objects have composition
factors isomorphic to L(w · φ), w ∈W . The simple objects in Oφ are parametrized
by the cosets W/Wφ, where Wφ := {w ∈ W ;w · φ = φ}. Denote by Wφ the set of
longest representatives of the elements in W/Wφ. Put Sφ = S ∩Wφ. We refer to
(W,S, Sφ) as the Coxeter-system of (g, b, φ). A block in category O depends only
on this Coxeter-system:

Proposition 2.4 ([Soe1], Theorem 11). 1 Assume we are given a Coxeter-system
(W,S, Sφ) where φ is any dominant weight. Let g′ ⊃ b′ ⊃ h′ be another semi-
simple Lie-algebra, a Borel subalgebra and a Cartan subalgebra and let φ′ ∈ h′∗

be any dominant weight. Then any isomorphism (W,S, Sφ)→̃(W ′, S′, S′φ′), w→ w′

induces an equivalence of categories Oφ(g, b)→̃Oφ′(g′, b′) with L(w ·φ) → L(w′ ·φ′).
Let φ, ψ ∈ h∗ be dominant weights. ψ defines a set of singular simple roots

Bψ := {α ∈ B; ψ(Hα) = −1}, and hence the parabolic subalgebra q(ψ) ⊇ b,
generated by b and the weight-spaces g−α for α ∈ Bψ. Let Oψφ be the subcategory
of Oφ consisting of locally q(ψ)-finite objects.

Translation functors. Recall the two translation functors T φ0 : O0 → Oφ and
T 0
φ : Oφ → O0, translation onto and out of the wall, respectively, e.g. [Jan]. By

definition T φ0 = prφ(E⊗C · ), where E is an irreducible finite-dimensional g-module

1This proposition actually holds for non-integral weights, with W replaced by the integral
Weyl group of φ, Oφ replaced by... etc; so all results in this paper generalize to the non-integral

case.



142 ERIK BACKELIN

with extremal weight φ and prφ is projection from O onto the block Oφ; T 0
φ =

pr0(F ⊗C · ), where F is an irreducible finite-dimensional g-module with extremal
weight −φ, pr0 is projection onto O0. They satisfy the following properties:

Lemma 2.5. 1) T φ0 and T 0
φ are exact functors adjoint to each other. There is an

isomorphism of functors idOφ ⊕ . . .⊕ idOφ ∼= T φ0 ◦T 0
φ (card(Wφ) number of copies).

2) For each simple in Oφ there is exactly one simple in O0 mapped to it by T φ0 .
More precisely, T φ0 L(w · 0) ∼= L(w · φ), if w ∈ Wφ, else T φ0 L(w · 0) = 0.

3) T 0
φ and T φ0 map projectives to projectives. Moreover, T 0

φP (w · φ) ∼= P (w · 0).
4) T φ0 and T 0

φ induce functors T φ0 : Oψ0 → Oψφ and T 0
φ : Oψφ → Oψ0 . Moreover, if

T φ0 L(w · 0) 6= 0 (hence ∼= L(w · φ)) and belongs to Oψφ , then L(w · 0) ∈ Oψ0 .

Proof. 1) The exactness of T φ0 and T 0
φ follows from the fact that E and F are flat

modules over C and that projecting to a block in O is an exact functor. Next, note
that F ∼= HomC(E,C) with the g-module structure given by (xφ)(e) := −φ(xe) for
x ∈ g, φ ∈ HomC(E,C), e ∈ E. Then, for M ∈ O0, N ∈ Oφ, we have

HomO(T φ0 M,N) = HomO(prφ(E ⊗C M), N) = HomO(E ⊗C M,N)

= HomO(M,F ⊗C N) = HomO(M, pr0(F ⊗C N)) = HomO(M,T 0
φN).

This means that T φ0 is left adjoint to T 0
φ . A similar argument shows that T φ0 is also

right adjoint to T 0
φ .

The last statement follows from [Jan], 4.13 (2), and [BG], Theorem 3.3
2) is proved in [Jan], 4.12 (3).
3) Let P ∈ Oφ be projective. We have Homg(T 0

φP, ) = Homg(P, T
φ
0 ( )). Since

P is projective and T φ0 is exact, we conclude that this functor is exact; hence T 0
φP

is projective. Analogously, T φ0 maps projectives to projectives. Next, from 2) we
get

Homg(T 0
φP (w · φ), L(x · φ)) = Homg(P (w · φ), T φ0 L(x · φ)) ∼= δw,xC

for each x ∈ W . Since we know that T 0
φP (w · φ) is projective, this formula implies

that T 0
φP (w · φ) ∼= P (w · 0).

For 4) we note that tensor product with a finite-dimensional module clearly
preserves locally finiteness over q(ψ); hence we get the asserted induced functors.

Assume 0 6= T φ0 L(w · 0). Then

HomO(L(w · 0), T 0
φT

φ
0 L(w · 0)) = HomO(T φ0 L(w · 0), T φ0 L(w · 0)) 6= 0,

which implies that L(w · 0) is isomorphic to a submodule of T 0
φT

φ
0 L(w · 0). Now, if

T φ0 L(w · 0) is locally finite over q(ψ), then T 0
φT

φ
0 L(w · 0), and hence also L(w · 0),

have this property.

Parabolic inclusion and truncation. Let i := iψφ : Oψφ → Oφ be the inclusion.
We shall refer to this exact functor i as the parabolic inclusion functor. We define
the parabolic truncation functor τ := τψφ : Oφ → Oψφ by τ(M) := “the maximal
quotient of M which is locally finite over q(ψ)”. Then τ is right exact and left
adjoint to i and it follows that τ maps projectives to projectives. Since a projective
object is indecomposable if and only if it has a unique simple quotient, we see
that τ maps indecomposable projectives to indecomposable projectives. (τ doesn’t
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map arbitrary indecomposables to indecomposables; a counterexample can be given
for sp(4, C).) It follows readily that τ maps a minimal projective generator to
a minimal projective generator. It is also easy to verify that if P,Q ∈ Oφ are
projective, then τ : HomOφ(P,Q) → HomOψφ (τP, τQ) is surjective.

Lemma 2.6. a) i and τ commutes with translation functors.
b) The functor Db(Oψφ ) → Db(Oφ) induced by i is faithful.

Proof. a) Clearly i commutes with translations functor: we have for each M ∈ Oφ
and N ∈ Oψφ that

HomOψφ (τT 0
φM,N) = HomOφ(T

0
φM, iN)

= HomOφ(M,T φ0 iN) = HomOφ(M, iT φ0 N)

= HomOψφ (τM, T φ0 N) = HomOψφ (T 0
φτM,N)

so that τT 0
φ = T 0

φτ . Analogously τT φ0 = T φ0 τ .
b) The case when φ = 0 is proved by geometry in [BGS], Theorem 3.5.3. We

have a commutative diagram of bounded derived categories:

Db(Oψ0 )
iψ0

// Db(O0)

Db(Oψφ )
iψφ

//

T 0
φ

OO

Db(Oφ)

T 0
φ

OO

Since T φ0 ◦ T 0
φ is isomorphic to card(Wφ) copies of the identity functor we see that

T 0
φ is faithful on derived categories and we conclude that also iψφ is faithful.

Endomorphism rings, ext-algebras and canonicity. The fact that projec-
tive covers are unique only up to non-unique isomorphism makes our constructions
non-canonical and causes delicate problems with commutative diagrams. We can
avoid these problems to some extent by choosing projective covers and maps be-
tween them commuting with various functors. Fix dominant weights φ and ψ. Fix
projective covers P (w ·φ) of L(w ·φ) in Oφ and put Pφ :=

∑
w∈W/Wφ

P (w ·φ). Anal-
ogously, fix P (w · ψ) and Pψ and fix P (w · 0) and P0. According to Lemma 2.5 3)
we fix for w ∈ Wφ isomorphisms T 0

φP (w ·φ) ∼= P (w ·0). We get the (now) canonical
isomorphism P0

∼= T 0
φPφ ⊕ (T 0

φPφ)
⊥ where (T 0

φPφ)
⊥ =

⊕
w∈W\Wφ P (w · 0).

It follows from the results in the previous paragraph that Pψ(w ·0) := τψP (w ·0)
is a projective cover of L(w ·0) in Oψ0 , if L(w ·0) ∈ Oψ0 and τψP (w ·0) = 0 else. Put
Pψ0 = τψP0 which is a (minimal) projective generator of Oψ0 . Define analogously
Pψφ (w · φ) := τψφ P (w · φ) and Pψφ := τψφ Pφ. We get the canonical isomorphism
Pψ0

∼= T 0
φP

ψ
φ ⊕ (T 0

φP
ψ
φ )⊥ where (T 0

φP
ψ
φ )⊥ = τψφ (T 0

φPφ)
⊥. Put L0 =

⊕
w∈W L(w · 0)

etc.

Definition 2.7. Let Rψφ := Endg(Pψφ ) and write for simplicity Rφ := R0
φ. Next,

consider the ring ExtOφψ(Lφψ, L
φ
ψ). This is a canonically graded ring with degree i
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part ExtiOφψ
(Lφψ, L

φ
ψ) and multiplication given by the cup-product. In [BGS], The-

orem 1.1.3, it is proved that ExtOφ0 (Lφ0 , L
φ
0 ) is Koszul and they also prove the exis-

tence of an isomorphism between ExtOφ0 (Lφ0 , L
φ
0 ) and Rφ. Under this isomorphism

is HomOφ0 (Lφ0 , L
φ
0 ) mapped onto the subring of Rφ spanned by projections onto

indecomposable projectives. We fix such an isomorphism. This defines a grading
on Rφ making it a Koszul ring. The parabolic truncation functor gives in Proposi-
tion 3.2 a graded surjection Rφ � Rψφ defining a grading (Rψφ )i on Rψφ . With this
grading we define a (canonically graded) algebra.

Definition 2.8. (Rψφ )! := ExtRψφ ((Rψφ )0, (R
ψ
φ )0).

Since each object in O has finite length, it is known and easy to verify that
the functor Homg(P

ψ
φ , ·) induces an equivalence of categories between Oψφ and the

category of finitely generated right Rψφ -modules. Now clearly Lψφ is mapped to the
right Rψφ -module (Rψφ )0 ∼= Rψφ/(R

ψ
φ )+ under this equivalence; this gives the ring

isomorphism

(Rψφ )! = ExtRψφ ((Rψφ )0, (Rψφ )0) ∼= ExtOψφ (Lψφ , L
ψ
φ ).(2.1)

We have the surjection

τψφ : Rφ � Rψφ .(2.2)

The composition EndOψφ (Pψφ ) → EndOψ0 (T 0
φP

ψ
φ ) → EndOψ(T 0

φP
ψ
φ ⊕ T 0

φP
ψ
φ )⊥) =

EndOψ0 (Pψ0 ) gives the injection

T 0
φ : Rψφ ↪→ Rψ0 .(2.3)

Similary, we get a map (which by Lemma 2.6 is injective)

iψφ : (Rψφ )! ↪→ (Rφ)!.(2.4)

By Lemma 2.5 T φ0 L
ψ
0
∼= Lψφ . Fix such an isomorphism and fix an analogous

isomorphism when ψ is replaced by 0 such that these two isomorphisms commute
with parabolic inclusion. We get from (2.1) the ring homomorphism

T φ0 : (Rψ0 )! → (Rψφ )!(2.5)

which will be shown to be a surjection in Lemma 3.4 below.

The easiest example. Let g = sl(2, C), X−, X+ and H the standard Cheval-
ley generators. O0 has up to isomorphism two simple objects: L(0) = C and
L(−2) = U(g)/(U(g)(H + 2) + U(g)X+). Then P (0) := U(g)/(U(g)H + U(g)X+)
and P (−2) := U(g)/(U(g)(H + 2) + U(g)X2

+) is a projective cover of L(0) and
L(−2ρ) in O0, respectively. Put P := P (0)⊕P (−2). This is a projective generator
of O0. Put R = Endg(P ). Then R is a five-dimensional algebra over C. Denote by
1̄ the image of 1 ∈ U(g) in P (0) and in P (−2), respectively. A vector space basis
of R is then given by: πi := idP (i) for i = 0,−2; α : P (0) → P (−2) : 1̄) → X+1̄;
β : P (−2) → P (0) : 1̄ → X−1̄ and γ : P (0) → P (0) : 1̄ → X−X+1̄.

This makes R = R[0] ⊕ R[1] ⊕ R[2] a graded algebra with R[0] := {π0, π−2},
R[1] = {α, β} and R[2] := {γ}. This defines also an R-module structure on R[0]
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by letting R[1] ⊕ R[2] act trivially. The Koszul dual of the graded ring R is by
definition R! := ExtR(R[0], R[0]).

Put L := L(0) ⊕ L(−2) and E := ExtO(L,L). Let E[i] := ExtiO(L,L), then
E = E[0] ⊕ E[1] ⊕ E[2] is a graded algebra with multiplication given by the cup
product.

Now, E[0] has basis j0, j−2 corresponding to the identity on L(0), L(−2). E[1]
has basis corresponding to the extension a : L(−2) ↪→M(0) � L(0), where M(0) =
U(g)/(U(g)H+U(g)X+) is the Verma module of highest weight zero, and b : L(0) ↪→
M(0)∗ � L(−2), where M(0)∗ is the dual of M(0) ([BGG1]) E[2] has basis c :=
ba ∈ Ext2O(L(0), L(0)).

As we have seen before E ∼= R!. The Koszul duality theorem in our case then
states that R ∼= E. Under this isomorphism, π0 → j0, π−2 → j−2, α → a, β → b
and γ → c.

3. Parabolic and singular-singular and parabolic Koszul duality

We have our fixed dominant weights φ and ψ. As mentioned before the set of
isomorphism classes of simple objects in Oφ, which we denote by IrrOφ, is naturally
parametrized by Wφ 3 w ↔ L(w · φ) ∈ IrrOφ. Note that w · 0(Hα) ≥ 0, ∀α ∈
Bφ ⇐⇒ w ∈ (Wφ)−1

w0; this means precisely that L(w·0) is locally finite over q(φ)
if and only if w ∈ (Wφ)−1

w0. This gives the bijection Wφ 3 w ↔ L(w−1w0 · 0) ∈
IrrOφ0 .

The projection Pφ � P (w · φ) defines an idempotent eφw ∈ (Rφ)0, w ∈ Wφ.
Similary, the projection Lφ0 � L(w · 0) defines an idempotent fφw ∈ ((Rφ0 )!)0 =
HomOφ(L

φ
0 , L

φ
0 ), for w ∈ (Wφ)−1

w0.
The following theorem was proved in [BGS], Theorem 1.1.3. (Their proof is

partly reconstructed in our proof of Lemma 3.5.)

Proposition 3.1. The rings Rφ and Rφ0 are Koszul and there is an isomorphism
Rφ→̃(Rφ0 )! such that eφw → fφw−1w0

, w ∈Wφ.

Clearly, the fφw−1w0
, w ∈ Wφ forms a basis of ((Rφ0 )!)0 over C. Hence the eφw,

w ∈ Wφ forms a basis of (Rφ)0, by the choice of grading on Rφ coming from the
grading of (Rφ0 )! and the above isomorphism.

Proposition 3.2. The ring Rψφ is Koszul.

Proof. Put Ω := {w ∈ W ; ∃α ∈ Bψ : w · φ(Hα) < 0} and let I ⊂ Rφ be the ideal
generated by the eφw for w ∈ Ω. We have (where mod-Rψφ means finitely generated
right Rψφ -modules)

mod-Rψφ ∼= Oψφ = {M ∈ Oφ : [M : L(w · φ)] = 0, ∀w ∈ Ω}
= {M ∈ Oφ : Homg(P (w · φ),M) = 0, ∀w ∈ Ω} ∼= mod-Rφ/I.

Since Rψφ and Rφ/I are basic algebras, we now conclude that they are isomorphic.
By Proposition 3.1 Rφ is Koszul and we conclude that Rψφ is a graded quotient

of Rφ with respect to the Koszul grading of Rφ. To show that Rψφ is Koszul we
just have to prove (by Proposition 2.2) that exti

Rψφ
((Rψφ )0, (R

ψ
φ )0〈j〉) = 0 when

i 6= j. We have the morphism Db(mod-Rψφ ) → Db(mod-Rφ) corresponding to



146 ERIK BACKELIN

iψφ : Db(Oψφ ) → Db(Oφ), which is faithful by Lemma 2.6. Since this morphism is
also induced by a graded ring homomorphism Rφ → Rψφ , we conclude that it gives
injections exti

Rψφ
((Rψφ )0, (R

ψ
φ )0〈j〉) ↪→ extiRφ((Rφ)0, (Rφ)0〈j〉). The Koszulity of Rφ

ensures that the latter expression vanishes for i 6= j.

The modular representation theoretic analogy of the following key lemma was
proved in [AJS].

Lemma 3.3. Let L and L′ be two simples in O0. Then T φ0 induces a surjection
Ext1O0

(L,L′) → Ext1Oφ(T
φ
0 L, T

φ
0 L

′).

Proof. (a) Put ν = T 0
φT

φ
0 . Clearly the assertion of the lemma is equivalent to show-

ing that the homomorphism Ext1O0
(L,L′) → Ext1Oφ(L, νL

′) given by the canonical
adjunction id → ν is surjective. We assume without restriction that T φ0 L

′ 6= 0;
then the morphism L′ → νL′ gives an embedding which identifies L′ with soc(νL′)
as follows from the formula (for any simple L′′ ∈ O0)

Homg(L′′, νL′) = Homg(T φ0 L
′′, T φ0 L

′) = δL′′,L′ ·C.

We want to define a grading on ν and for this purpose we must pass to derived
categories and modules over the coinvariant algebra. The discussion below should
rather have been presented as a part of a comprehensive exposition of the theory.

(b) Put S = S(h∗); we define a grading on S by putting h∗ in degree 1. Its graded
quotient C := S/S+ · SW is called the coinvariant algebra. Let Cφ := CWφ ⊂ C
be the graded subalgebra of Wφ invariants. In [Soe1], Endomorphismensatz 7, an
isomorphism Cφ→̃EndOφ(P (w0 · φ)) of rings is constructed.

Let Proj(Oφ) be the category of projective objects in Oφ. Define the functor
Vφ : Q → HomOφ(P (w0 · φ), Q) from Proj(Oφ) to mod-Cφ := the category of
right modules over Cφ (by means of the above ring isomorphism). It is proved in
[Soe1], Struktursatz 9, that Vφ is fully faithful so that Vφ induces an equivalence
of categories between Proj(Oφ) and its image category Im(Vφ).

(c) Given a categoryA of some modules over a graded ring R, we define its graded
version Ã to be the category of those graded modules over R whose underlying R-
modules belong to A. There is the grading-forgetting functor for : Ã → A. Assume
in addition we are given the data (B̃,B, for). We say that a functor F̃ : Ã → B̃ is
a grading of the functor F : A → B if for ◦F̃ = F ◦ for .

Consider the grading of Rφ given by Proposition 3.1 and identify Oφ with the
category of finitely generated right modules over Rφ; we get graded categories Õφ
and ˜Proj(Oφ) ⊂ Õφ and also m̃od -Cφ and ˜Im(Vφ) ⊂ m̃od-Cφ.

The eqivalence Vφ : Proj(Oφ)→̃Im(Vφ) induces (by definition!) an equivalence
˜Proj(Oφ)→̃ ˜Im(Vφ), which in turn induces an equivalence between homotopy cate-

gories Kb( ˜Proj(Oφ))→̃Kb(Ĩm(Vφ)). Remember that Kb( ˜Proj(Oφ)) is canonically
isomorphic to the bounded derived category Db(Õφ); we get the equivalence

Vφ : Db(Õφ)→̃Kb(Ĩm(Vφ)).(3.1)
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(d) There are the standard functors

resC
φ

C : mod-C 3M →M |Cφ ∈ mod-Cφ,

indCCφ : mod-Cφ 3M → C ⊗Cφ M ∈ mod-C.

The fact that Cφ is a graded subalgebra enables us to define r̃esCφC and ĩndC
Cφ

in

such a way that they become adjoint to each other and r̃esCφC preserves pure objects
of any weight.

It is proved in [Soe1], Theorem 10, that Vφ ◦ T φ0 = resC
φ

C ◦ V0 : Proj(O0) →
Im(Vφ) and that V0 ◦ T 0

φ = indCCφ ◦ Vφ : Oφ → Im(V0).
Thus formula (3.1) gives us (abusing some notation) functors T̃ 0

φ : Db(Õφ) →
Db(Õ0) and T̃ φ0 : Db(Õ0) → Db(Õφ).

However, since T φ0 is clearly t exact (with respect to the standard t-structures
on Db(O0) and Db(Oφ)), it follows that also T̃ φ0 is t exact. This gives us the graded
translation functor T̃ 0

φ : Õφ → Õ0 and analogously we get T̃ φ0 : Õ0 → Õφ. These
latter two functors are adjoint and T̃ φ0 preserves pure objects of any weight. We
also get the graded functor ν̃ := T̃ 0

φ ◦ T̃ φ0 on Õ0.
(e) A simple module in O0 can be given the (unique up to a shift) grading of

being pure. Denote by L̃ and L̃′ the simple objects in Õ0 which are pure of weight
0 satisfying for(L̃) = L and for (L̃′) = L′. Since T̃ 0

φ and T̃ φ0 are adjoint and T̃ φ0
preserves pure objects of weight 0, we see that the image of L̃′ → ν̃L̃′ lives in degree
0. Note also that it follows from (a) that the morphism id → ν̃ identifies L̃′ with
soc(ν̃L̃′).

Let i be maximal such that (ν̃L̃′)i 6= 0. Then (ν̃L̃′)i is semi-simple (since it
is annihilated by the radical of R0 when we identify the category O0 with some
modules over R0), hence (ν̃L̃′)i ⊆ soc(ν̃L̃′), hence i = 0.

Since soc(ν̃L̃′) = L̃′ is simple and (ν̃L̃′)0 ⊆ soc(ν̃L̃′) is non-zero we now get
(ν̃L̃′)0 = L̃′. We conclude that ν̃L̃′/L̃′ lives only in degrees ≤ −1.

(f) Consider the short exact sequence

0 → L′ → νL′ → νL′/L′ → 0.

It induces the exact sequence

Ext1O0
(L,L′) → Ext1O0

(L, νL′) → Ext1O0
(L, νL′/L′).(3.2)

Now let Ext1Õ0
( , ) denote the first left derived functor of the (grading-preserving)

hom-functor in the graded category Õ0; we get

Ext1O0
(for (M), for (N)) =

∏
i∈Z

Ext1Õ0
(M,N〈i〉)

for each M,N ∈ Õ0. Thus (3.2) is given by exact sequences

Ext1Õ0
(L̃, L̃′〈i〉) → Ext1Õ0

(L̃, ν̃L̃′〈i〉) → Ext1Õ0
(L̃, ν̃L̃′/L̃′〈i〉)

and we have to prove that the first map is surjective for every i.
We have Ext1Õ0

(L̃, ν̃L̃′〈i〉) = Ext1Õφ(T̃
φ
0 L, T̃

φ
0 L̃

′〈i〉) and T̃ φ0 L̃
′ is pure of weight

0. Koszulity of Oφ implies that T̃ φ0 L̃ admits a graded projective resolution whose
jth component is generated in degree j. It follows easily that Ext1Õ0

(L̃, ν̃L̃′〈i〉) = 0



148 ERIK BACKELIN

if i 6= 1. Hence it suffices to show that Ext1Õ0
(L̃, L̃′〈1〉) → Ext1Õ0

(L̃, ν̃L̃′〈1〉) is
surjective.

This is true, because by Koszulity again L̃ admits a graded projective resolution
whose jth component is generated in degree j and since ν̃L̃′/L̃′ lives in degrees < 0,
we get Ext1Õ0

(L̃, ν̃L̃′/L̃′〈i〉) = 0 unless i > 1. In particular this group vanishes for
i = 1.

Lemma 3.4. T φ0 induces a surjective algebra homomorphism (Rψ0 )! � (Rψφ )!.

Proof. Recall from (2.1) that this means that the homomorphism ExtOψ0 (Lψ0 , L
ψ
0 ) →

ExtOψφ (Lψφ , L
ψ
φ ) induced from T φ0 (and our fixed isomorphism T φ0 L

ψ
0
∼= Lψφ ) is sur-

jective. Surjectivity in degree 0 is obvious.
The category Oψ0 (resp., Oψφ ) is closed under extensions in O0 (resp., in Oφ) so if

we interpret Lemma 3.3 as surjections between Yoneda extensions, the surjectivity
in degree 1 is clear.

Since the second algebra in the statement of the lemma is Koszul, it is generated
in degree 1 over its degree 0 part and we are done.

Proposition 3.5. One can choose isomorphisms R0→̃(R0)! and Rφ→̃(Rφ0 )! satis-
fying the properties of Proposition 3.1 which make the diagram below commute:

R0
∼

// (R0)!

Rφ
∼

//
?�

T 0
φ

OO

(Rφ0 )!
?�

i

OO

Proof. (a) We keep the notations of the proof of Lemma 3.3. We get from the
discussion in (d) in the proof of Lemma 3.3 the commutative diagram

R0
V

// EndC(VP0)

Rφ
Vφ

//
?�

T 0
φ

OO

EndCφ(VφPφ)
?�

indC
Cφ

OO

(b) Let X be a smooth complex variety equipped with an algebraic B-action,
such that the B-orbits form a stratification of X , consisting of finitely many linear
affine spaces. We denote by D(X) the bounded derived category of C-constructible
sheaves on X , whose cohomologies are constant on B-orbits. Let P(X) ⊂ D(X)
be the subcategory of perverse sheaves. It follows from the Riemann-Hilbert corre-
spondence that D(X) is canonically isomorphic to Db(P(X)), (e.g. [BGS], Corol-
lary 3.3.2). For F ∈ D(X), the hypercohomology complex H(F) := RΓ(X ; F)
is an object in Db(C), the derived category of vector spaces. Let CX denote the
constant sheaf on X . The canonical isomorphism F ∼= CX ⊗ F gives us a ring-
homomorphism End•D(X)(CX) → End•Db(C)(HF). This defines an action of the
cohomology ring H•(X) = End•D(X)(CX) on HF ; hence, hypercohomology gives a
functor H : D(X) → H•(X)-Mod.

A (minimal) simple generator of the category P(X) is given by
⊕

IC•(Y ) where
Y runs over the set of B-orbits on X and IC•(Y ) denotes the intersection cohomol-
ogy sheaf on Y (recall that Y is simply connected).
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(c) Let G be the group of inner automorphisms of g, B ⊂ Q the subgroups such
that LieB = b and LieQ = q(φ). We put D := D(G/B),DQ := D(G/Q),P :=
P(G/B) and PQ := P(G/Q). We fix isomorphisms C ∼= H•(G/B) and Cφ ∼=
H•(G/Q) such that the inclusion Cφ ↪→ C corresponds to the pullback morphism
π? : End•D(CG/Q) → End•D(CG/B), where π : G/B → G/Q is the projection, (cf.
[BGG2]).

Let L0(w · 0) := IC•(BwB/B) ∈ P and L0 :=
⊕

w∈W L0(w · 0); analogously, put
Lφ0 (w · 0) := IC•(BwQ/Q) ∈ PQ and Lφ0 :=

⊕
w∈Wφ Lφ0 (w · 0).

Recall (R0)! ∼= ExtO0(L0, L0) and (Rφ0 )! ∼= ExtOφ0 (Lφ0 , L
φ
0 ) canonically. We have

ExtOφ0 (Lφ0 , L
φ
0 ) ∼= ExtPQ(Lφ0 ,Lφ0 ), by [BGS], Theorem 3.5.1. Also,

End•DQ(Lφ0 ,Lφ0 ) ∼= End•Db(PQ)(Lφ0 ,Lφ0 ) ∼= ExtPQ(Lφ0 ,Lφ0 ).

Thus, (Rφ0 )! ∼= End•DQ(Lφ0 ,Lφ0 ). In particular, (R0)! ∼= End•D(L0,L0). By [Soe1],
Erweiterungssatz 17, the hypercohomology induces ring isomorphisms

End•D(L0,L0) → EndC(HL0,HL0) & End•DQ(Lφ0 ,Lφ0 ) → EndCφ(HLφ,HLφ0 ).

Consider the diagram (where d = dimCG/B − dimCG/Q):

EndC(HL0,HL0) End•D(L0,L0)∼oo ∼
// (R0)!

EndCφ(HLφ0 ,HLφ)
?�

indC
Cφ

OO

End•DQ(Lφ0 ,Lφ0 )∼oo ∼
//

?�

π?[d]

OO

(Rφ0 )!
?�

i

OO

The second square commutes by [BGS], Theorem 3.5.3. The first square commutes
by definition if we replace indCCφ by Hπ?[d]. However, in [Soe1], Theorem 14, an
isomorphism of functors Hπ?[d] ∼= indCCφ ◦H : DQ → C-Mod is constructed, so the
diagram commutes as asserted.

(d) Isomorphisms V0P0(w·0) ∼= HL0(w·0), w ∈W , of C-modules are constructed
in [Soe1], Proposition 10 and Lemma 9.

That proof can be modified to the parabolic case (an ad hoc proof is also given
in [BGS], Lemma 3.7.2) which gives the isomorphisms VφPφ(w · φ) ∼= HLφ0 (w · 0),
w ∈ Wφ, of Cφ-modules; we fix these latter isomorphisms.

Now, according to (d) in the proof of Proposition 3.5 and [Soe1], Theorem 14,
there are isomorphisms indCCφVφPφ(w · φ) ∼= V0P0(w · 0) and indCCφHLφ0 (w · 0) ∼=
HL0(w · 0), w ∈Wφ. Fix such isomorphisms.

Then we choose those isomorphisms V0P0(w ·0) ∼= HL0(w ·0) for w ∈Wφ which
are compatible with all our fixed isomorphisms above; finally fix any isomorphisms
V0P0(w · 0) ∼= HL0(w · 0) for w ∈ W \ Wφ. By construction this gives us a
commutative diagram:

EndC(V0P0,V0P0)
∼

// EndC(HL0,HL0)

EndCφ(VφPφ,VφPφ)
∼

//
?�

indC
Cφ

OO

EndCφ(HLφ,HLφ)
?�

indC
Cφ

OO

Arranging the three commutative diagrams that occur in this proof into one big
commutative diagram the theorem is proved.
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Recall the idempotents eψw ∈ (Rψ)0 and fψw−1w0
∈ ((Rψ0 )!)0, w ∈ Wψ , from the

beginning of this section which correspond under the isomorphism Rψ→̃(Rψ0 )! given
by Proposition 3.1.

Put ψ̄ := −w0ψ. (Note that there is no “ · ” in this product.) Then ψ̄ is a
dominant weight such that w0Sψ̄w0 = Sψ so that we have an isomorphism of
Coxeter-systems (W,S, Sψ̄)→̃(W,S, Sψ), w0ww0 → w. It follows from Proposition
2.4 that this gives (after choosing a projective generator Pψ̄ and putting Rψ̄ :=
Endg(Pψ̄)) a ring isomorphism Rψ̄→̃Rψ such that eψ̄w0ww0

maps to eψw, w ∈ Wψ.
Composing the surjection in Lemma 3.4 with the isomorphism Rψ→̃(Rψ0 )! and the
isomorphism Rψ̄→̃Rψ we get a surjection

π : Rψ̄ � (Rψφ )!, with π(eψ̄w0ww0
) = T φ0 (fψw−1w0

), for w ∈Wψ.(3.3)

Put Ωφ
ψ̄

:= {w ∈ w0W
ψw0; ∃α ∈ Bφ : w · ψ̄(Hα) < 0} and let Iφ

ψ̄
be the ideal in

Rψ̄ generated by the eψ̄w for w ∈ Ωφ
ψ̄
. Then Rψ̄/I

φ

ψ̄
and Rφ

ψ̄
have — in analogy with

what we saw in the proof of Proposition 3.2 — isomorphic categories of finitely
generated right modules (∼= Oφ

ψ̄
) and these algebras are basic so they must be iso-

morphic. We have the surjection τφ
ψ̄

: Rψ̄ � Rφ
ψ̄

(after putting Rφ
ψ̄

:= Endg(τ
φ

ψ̄
Pψ̄))

which clearly vanishes on Iφ
ψ̄

so we get the induced surjection τφ
ψ̄

: Rψ̄/I
φ

ψ̄
� Rφ

ψ̄

which must be an isomorphism.

Lemma 3.6. π vanishes on Iφ
ψ̄
; thus π factors as

Rψ̄

τφ
ψ̄

� Rφ
ψ̄

� (Rψφ )!.

Proof. (a) We know that π(eψ̄w0ww0
) = T φ0 (fψw−1w0

), for w ∈ Wψ . Put Γ :=
{w ∈ Wψ; w−1w0(α) ∈ R−, ∀α ∈ Bφ}. Thus π(ew0ww0) 6= 0 ⇐⇒ w ∈ Γ,
by Lemma 2.5 3) and the fact that w ∈ Wφ ⇐⇒ w(α) ∈ R−, ∀α ∈ Bφ. Put Λ :=
{w ∈ Wψ; w0ww0 · ψ̄(Hα) ≥ 0}. If we can show that Γ ⊆ Λ, the lemma is proved.
We prove Γ = Λ.

(b) Λ ⊆ Γ. Let w ∈ Λ. Then for each α ∈ Bφ we have (where ( , ) denotes the
Killing-form):

0 ≤ w0ww0 · ψ̄(Hα) = −w0w · ψ(Hα)

⇐⇒ 0 ≤ (−w0w · ψ , α) = (−w0w(ψ + ρ)− ρ , α)

= (−w0w(ψ + ρ) , α)− 1 = −(ψ + ρ, w−1w0(α)) − 1

⇐⇒ (ψ + ρ, w−1w0(α)) ≤ −1 =⇒ w−1w0(α) ∈ R−,
since ψ is dominant. Hence w ∈ Γ.

(c) We conclude from Lemma 2.5 that we have the bijection Γ 3 w ↔ L(w ·φ) ∈
IrrOψφ and we clearly have the bijection Λ 3 w ↔ L(w0ww0 · ψ̄) ∈ IrrOφ

ψ̄
. Thus

we have by (b) the inequality card(IrrOφ
ψ̄
) ≤ card(IrrOψφ ) and replacing ψ by φ

and φ by ψ̄ we get a reserve inequality which now gives Γ = Λ.

Theorem 3.7. Rφ−w0ψ
is isomorphic to (Rψφ )!.

Remark 3.8. The obvious idempotents in (Rφ−w0ψ
)0 resp., in ((Rψφ )!)0 correspond

under this isomorphism.
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Remark 3.9. One could probably combinatorially show that both rings in the the-
orem have the same dimension by constructing an inversion formula for the gener-
alized Kazhdan-Lusztig polynomials associated to the highest weight category Oψφ
(cf. [CPS]) which according to Lemma 3.6 would prove the theorem.

Proof. Consider the diagram (with ψ̄ = −w0ψ)

R0
∼

// (R0)!
Tφ0

// // (Rφ)!

Rψ̄
∼

//
?�

T 0
ψ̄

OO

(Rψ0 )!
Tφ0

// //
?�

iψ0

OO

(Rψφ )!
?�

iψφ

OO
(3.4)

The horizontal isomorphisms to the left can be chosen making the left square com-
mutative. Indeed, if in the left lower corner we replace Rψ̄ by Rψ and its upgoing
arrow T 0

ψ̄
by T 0

ψ, this is the statement of Proposition 3.5. The reader may then

verify that T 0
ψ̄

: Rψ̄ ↪→ R0 equals the composition Rψ̄→̃Rψ
T 0
φ

↪→ R0 where the first
map is induced from the isomorphism (W,S, Sψ̄) 3 w → w0ww0 ∈ (W,S, Sψ) of
Coxeter-systems.2 The right square clearly commutes and its horizontal maps are
surjections by Lemma 3.4.

Applying Lemma 3.6 to the composition of the maps in the bottom row of (3.4)
(resp., in the top row with ψ = 0) we conclude — since parabolic truncation
functors commute with translation functors — that the outer rectangle of (3.4)
factors through the commutative diagram

Rφ0
// // (Rφ)!

Rφ
ψ̄

// //
?�

T 0
ψ̄

OO

(Rψφ )!
?�

iψφ

OO

The upper horizontal map must be an isomorphism since we know that Rφ0
and (Rφ)! (being isomorphic) have the same dimensions. Since the vertical maps
are injective, we conclude that the lower horizontal map is injective; hence an
isomorphism.
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152 ERIK BACKELIN

References

[AJS] H.H. Andersen, J.C. Jantzen and W. Soergel, Representations of quantum groups at a pth
root of unity and of semisimple groups in characteristic p: independence of p, Astérisque
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