Koszul duality for parabolic and singular category $\mathcal O$
HTML articles powered by AMS MathViewer
- by Erik Backelin PDF
- Represent. Theory 3 (1999), 139-152 Request permission
Abstract:
This paper deals with a generalization of the “Koszul duality theorem” for the Bernstein-Gelfand-Gelfand category $\mathcal O$ over a complex semi-simple Lie-algebra, established by Beilinson, Ginzburg and Soergel in Koszul duality patterns in representation theory, J. Amer. Math. Soc. 9 (1996), 473–527. In that paper it was proved that any “block” in $\mathcal O$, determined by an integral, but possibly singular weight, is Koszul (i.e. equivalent to the category of finitely generated modules over some Koszul ring) and, moreover, that the “Koszul dual” of such a block is isomorphic to a “parabolic subcategory” of the trivial block in $\mathcal O$. We extend these results to prove that a parabolic subcategory of an integral and (possibly) singular block in $\mathcal O$ is Koszul and we also calculate the Koszul dual of such a category.References
- H. H. Andersen, J. C. Jantzen, and W. Soergel, Representations of quantum groups at a $p$th root of unity and of semisimple groups in characteristic $p$: independence of $p$, Astérisque 220 (1994), 321 (English, with English and French summaries). MR 1272539
- J. N. Bernstein and S. I. Gel′fand, Tensor products of finite- and infinite-dimensional representations of semisimple Lie algebras, Compositio Math. 41 (1980), no. 2, 245–285. MR 581584
- J. Bernstein, I.M. Gelfand and S.I. Gelfand, Category of $\mathfrak {g}$-modules, Functional Anal. Appl. 10 (1976), 87–92.
- J. Bernstein, I.M. Gelfand and S.I. Gelfand, Schubert cells and cohomology of spaces $G/B$, Russian Math. Survey 28 (1973), no. 3, 87–92.
- Alexander Beilinson, Victor Ginzburg, and Wolfgang Soergel, Koszul duality patterns in representation theory, J. Amer. Math. Soc. 9 (1996), no. 2, 473–527. MR 1322847, DOI 10.1090/S0894-0347-96-00192-0
- Edward Cline, Brian Parshall, and Leonard Scott, Abstract Kazhdan-Lusztig theories, Tohoku Math. J. (2) 45 (1993), no. 4, 511–534. MR 1245719, DOI 10.2748/tmj/1178225846
- Jens Carsten Jantzen, EinhĂĽllende Algebren halbeinfacher Lie-Algebren, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 3, Springer-Verlag, Berlin, 1983 (German). MR 721170, DOI 10.1007/978-3-642-68955-0
- D. Kazhdan and G. Lusztig, Tensor structures arising from affine Lie algebras. I, II, J. Amer. Math. Soc. 6 (1993), no. 4, 905–947, 949–1011. MR 1186962, DOI 10.1090/S0894-0347-1993-99999-X
- D. Kazhdan and G. Lusztig, Tensor structures arising from affine Lie algebras. III, J. Amer. Math. Soc. 7 (1994), no. 2, 335–381. MR 1239506, DOI 10.1090/S0894-0347-1994-1239506-X
- Wolfgang Soergel, Kategorie $\scr O$, perverse Garben und Moduln über den Koinvarianten zur Weylgruppe, J. Amer. Math. Soc. 3 (1990), no. 2, 421–445 (German, with English summary). MR 1029692, DOI 10.1090/S0894-0347-1990-1029692-5
- W. Soergel, $\mathfrak {n}$-cohomology of simple highest weight modules on walls and purity, Invent. Math. 98 (1989), no. 3, 565–580. MR 1022307, DOI 10.1007/BF01393837
Additional Information
- Erik Backelin
- Affiliation: Department of Mathematics, Albert-Ludwigs-Universitat, Eckerstr. 1, D-79104 Freiburg im Briesgau, Germany
- Email: erik@toto.mathematik.uni-freiburg.de
- Received by editor(s): August 24, 1998
- Received by editor(s) in revised form: January 31, 1999
- Published electronically: July 19, 1999
- © Copyright 1999 American Mathematical Society
- Journal: Represent. Theory 3 (1999), 139-152
- MSC (1991): Primary 17B10, 18G15, 17B20
- DOI: https://doi.org/10.1090/S1088-4165-99-00055-2
- MathSciNet review: 1703324