Bases in equivariant $K$-theory. II
HTML articles powered by AMS MathViewer
- by G. Lusztig
- Represent. Theory 3 (1999), 281-353
- DOI: https://doi.org/10.1090/S1088-4165-99-00083-7
- Published electronically: September 28, 1999
- PDF | Request permission
Abstract:
In this paper we establish a connection between the “bases" in Bases in equivariant $K$-theory, Represent. Theory 2 (1999), 298-369 and the periodic $W$-graphs introduced in Periodic $W$-graphs, Represent. Theory 1 (1997), 207–279.References
- A. Białynicki-Birula, Some theorems on actions of algebraic groups, Ann. of Math. (2) 98 (1973), 480–497. MR 366940, DOI 10.2307/1970915
- W. M. Beynon and N. Spaltenstein, Green functions of finite Chevalley groups of type $E_{n}$ $(n=6,\,7,\,8)$, J. Algebra 88 (1984), no. 2, 584–614. MR 747534, DOI 10.1016/0021-8693(84)90084-X
- Roger W. Carter, Finite groups of Lie type, Pure and Applied Mathematics (New York), John Wiley & Sons, Inc., New York, 1985. Conjugacy classes and complex characters; A Wiley-Interscience Publication. MR 794307
- Corrado De Concini and Victor G. Kac, Representations of quantum groups at roots of $1$, Operator algebras, unitary representations, enveloping algebras, and invariant theory (Paris, 1989) Progr. Math., vol. 92, Birkhäuser Boston, Boston, MA, 1990, pp. 471–506. MR 1103601
- C. De Concini, G. Lusztig, and C. Procesi, Homology of the zero-set of a nilpotent vector field on a flag manifold, J. Amer. Math. Soc. 1 (1988), no. 1, 15–34. MR 924700, DOI 10.1090/S0894-0347-1988-0924700-2
- Dragomir Ž. Đoković, Classification of nilpotent elements in simple exceptional real Lie algebras of inner type and description of their centralizers, J. Algebra 112 (1988), no. 2, 503–524. MR 926619, DOI 10.1016/0021-8693(88)90104-4
- William Fulton, Intersection theory, 2nd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 2, Springer-Verlag, Berlin, 1998. MR 1644323, DOI 10.1007/978-1-4612-1700-8
- David Kazhdan and George Lusztig, Proof of the Deligne-Langlands conjecture for Hecke algebras, Invent. Math. 87 (1987), no. 1, 153–215. MR 862716, DOI 10.1007/BF01389157
- George Lusztig, Hecke algebras and Jantzen’s generic decomposition patterns, Adv. in Math. 37 (1980), no. 2, 121–164. MR 591724, DOI 10.1016/0001-8708(80)90031-6
- G. Lusztig, Intersection cohomology complexes on a reductive group, Invent. Math. 75 (1984), no. 2, 205–272. MR 732546, DOI 10.1007/BF01388564
- George Lusztig, Cells in affine Weyl groups, Algebraic groups and related topics (Kyoto/Nagoya, 1983) Adv. Stud. Pure Math., vol. 6, North-Holland, Amsterdam, 1985, pp. 255–287. MR 803338, DOI 10.2969/aspm/00610255
- G. Lusztig, Periodic $W$-graphs, Represent. Theory 1 (1997), 207–279. MR 1464171, DOI 10.1090/S1088-4165-97-00033-2
- G. Lusztig, Bases in equivariant $K$-theory, Represent. Theory 2 (1998), 298–369. MR 1637973, DOI 10.1090/S1088-4165-98-00054-5
- G. Lusztig, Subregular nilpotent elements and bases in $K$-theory, Canad. J. Math. (1999).
- G. Lusztig, Representation theory in characteristic $p$, Proceedings of Taniguchi Conference, Nara ’98 (to appear).
- Jir\B{o} Sekiguchi, Remarks on real nilpotent orbits of a symmetric pair, J. Math. Soc. Japan 39 (1987), no. 1, 127–138. MR 867991, DOI 10.2969/jmsj/03910127
- Peter Slodowy, Simple singularities and simple algebraic groups, Lecture Notes in Mathematics, vol. 815, Springer, Berlin, 1980. MR 584445, DOI 10.1007/BFb0090294
- R. W. Thomason, Une formule de Lefschetz en $K$-théorie équivariante algébrique, Duke Math. J. 68 (1992), no. 3, 447–462 (French). MR 1194949, DOI 10.1215/S0012-7094-92-06817-7
Bibliographic Information
- G. Lusztig
- Affiliation: Institute for Advanced Study, Princeton, New Jersey 08540
- Address at time of publication: Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
- MR Author ID: 117100
- Received by editor(s): March 9, 1999
- Received by editor(s) in revised form: April 15, 1999, and August 7, 1999
- Published electronically: September 28, 1999
- Additional Notes: Supported by the Ambrose Monnel Foundation and the National Science Foundation
- © Copyright 1999 American Mathematical Society
- Journal: Represent. Theory 3 (1999), 281-353
- MSC (1991): Primary 20G99
- DOI: https://doi.org/10.1090/S1088-4165-99-00083-7
- MathSciNet review: 1714628