Module extensions over classical Lie superalgebras
HTML articles powered by AMS MathViewer
- by Edward S. Letzter
- Represent. Theory 3 (1999), 354-372
- DOI: https://doi.org/10.1090/S1088-4165-99-00062-X
- Published electronically: October 5, 1999
- PDF | Request permission
Abstract:
We study certain filtrations of indecomposable injective modules over classical Lie superalgebras, applying a general approach for noetherian rings developed by Brown, Jategaonkar, Lenagan, and Warfield. To indicate the consequences of our analysis, suppose that $\mathfrak {g}$ is a complex classical simple Lie superalgebra and that $E$ is an indecomposable injective $\mathfrak {g}$-module with nonzero (and so necessarily simple) socle $L$. (Recall that every essential extension of $L$, and in particular every nonsplit extension of $L$ by a simple module, can be formed from $\mathfrak {g}$-subfactors of $E$.) A direct transposition of the Lie algebra theory to this setting is impossible. However, we are able to present a finite upper bound, easily calculated and dependent only on $\mathfrak {g}$, for the number of isomorphism classes of simple highest weight $\mathfrak {g}$-modules appearing as $\mathfrak {g}$-subfactors of $E$.References
- Dan Barbasch, Filtrations on Verma modules, Ann. Sci. École Norm. Sup. (4) 16 (1983), no. 3, 489–494 (1984). MR 740080, DOI 10.24033/asens.1457
- Walter Borho, Invariant dimension and restricted extension of Noetherian rings, Paul Dubreil and Marie-Paule Malliavin Algebra Seminar, 34th Year (Paris, 1981) Lecture Notes in Math., vol. 924, Springer, Berlin-New York, 1982, pp. 51–71. MR 662252, DOI 10.1007/BFb0092925
- Kenneth A. Brown, Ore sets in Noetherian rings, Séminaire d’algèbre Paul Dubreil et Marie-Paule Malliavin, 36ème année (Paris, 1983–1984) Lecture Notes in Math., vol. 1146, Springer, Berlin, 1985, pp. 355–366. MR 873094, DOI 10.1007/BFb0074547
- Kenneth A. Brown and R. B. Warfield Jr., The influence of ideal structure on representation theory, J. Algebra 116 (1988), no. 2, 294–315. MR 953153, DOI 10.1016/0021-8693(88)90219-0
- M. Cohen and S. Montgomery, Group-graded rings, smash products, and group actions, Trans. Amer. Math. Soc. 282 (1984), no. 1, 237–258. MR 728711, DOI 10.1090/S0002-9947-1984-0728711-4
- Jacques Dixmier, Enveloping algebras, Graduate Studies in Mathematics, vol. 11, American Mathematical Society, Providence, RI, 1996. Revised reprint of the 1977 translation. MR 1393197, DOI 10.1090/gsm/011
- O. Gabber and A. Joseph, Towards the Kazhdan-Lusztig conjecture, Ann. Sci. École Norm. Sup. (4) 14 (1981), no. 3, 261–302. MR 644519, DOI 10.24033/asens.1406
- K. R. Goodearl and E. S. Letzter, Prime ideals in skew and $q$-skew polynomial rings, Mem. Amer. Math. Soc. 109 (1994), no. 521, vi+106. MR 1197519, DOI 10.1090/memo/0521
- K. R. Goodearl and R. B. Warfield Jr., An introduction to noncommutative Noetherian rings, London Mathematical Society Student Texts, vol. 16, Cambridge University Press, Cambridge, 1989. MR 1020298
- Ronald S. Irving, The socle filtration of a Verma module, Ann. Sci. École Norm. Sup. (4) 21 (1988), no. 1, 47–65. MR 944101, DOI 10.24033/asens.1550
- Jens Carsten Jantzen, Einhüllende Algebren halbeinfacher Lie-Algebren, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 3, Springer-Verlag, Berlin, 1983 (German). MR 721170, DOI 10.1007/978-3-642-68955-0
- A. V. Jategaonkar, Localization in Noetherian rings, London Mathematical Society Lecture Note Series, vol. 98, Cambridge University Press, Cambridge, 1986. MR 839644, DOI 10.1017/CBO9780511661938
- A. Joseph and L. W. Small, An additivity principle for Goldie rank, Israel J. Math. 31 (1978), no. 2, 105–114. MR 516246, DOI 10.1007/BF02760541
- V. G. Kac, Lie superalgebras, Advances in Math. 26 (1977), no. 1, 8–96. MR 486011, DOI 10.1016/0001-8708(77)90017-2
- G. R. Krause and T. H. Lenagan, Growth of algebras and Gel′fand-Kirillov dimension, Research Notes in Mathematics, vol. 116, Pitman (Advanced Publishing Program), Boston, MA, 1985. MR 781129
- T. H. Lenagan and Edward S. Letzter, The fundamental prime ideals of a Noetherian prime PI ring, Proc. Edinburgh Math. Soc. (2) 33 (1990), no. 1, 113–121. MR 1038770, DOI 10.1017/S0013091500028935
- T. H. Lenagan and R. B. Warfield Jr., Affiliated series and extensions of modules, J. Algebra 142 (1991), no. 1, 164–187. MR 1125211, DOI 10.1016/0021-8693(91)90223-U
- Edward Letzter, Primitive ideals in finite extensions of Noetherian rings, J. London Math. Soc. (2) 39 (1989), no. 3, 427–435. MR 1002455, DOI 10.1112/jlms/s2-39.3.427
- Edward S. Letzter, Prime ideals in finite extensions of Noetherian rings, J. Algebra 135 (1990), no. 2, 412–439. MR 1080857, DOI 10.1016/0021-8693(90)90299-4
- Edward S. Letzter, Finite correspondence of spectra in Noetherian ring extensions, Proc. Amer. Math. Soc. 116 (1992), no. 3, 645–652. MR 1098402, DOI 10.1090/S0002-9939-1992-1098402-1
- Edward S. Letzter, A bijection of primitive spectra for classical Lie superalgebras of type I, J. London Math. Soc. (2) 53 (1996), no. 1, 39–49. MR 1362685, DOI 10.1112/jlms/53.1.39
- Martin Lorenz, On Gel′fand-Kirillov dimension and related topics, J. Algebra 118 (1988), no. 2, 423–437. MR 969682, DOI 10.1016/0021-8693(88)90031-2
- J. C. McConnell and J. C. Robson, Noncommutative Noetherian rings, Pure and Applied Mathematics (New York), John Wiley & Sons, Ltd., Chichester, 1987. With the cooperation of L. W. Small; A Wiley-Interscience Publication. MR 934572
- Susan Montgomery, Fixed rings of finite automorphism groups of associative rings, Lecture Notes in Mathematics, vol. 818, Springer, Berlin, 1980. MR 590245, DOI 10.1007/BFb0091561
- Ian M. Musson, A classification of primitive ideals in the enveloping algebra of a classical simple Lie superalgebra, Adv. Math. 91 (1992), no. 2, 252–268. MR 1149625, DOI 10.1016/0001-8708(92)90018-G
- Ian M. Musson, Primitive ideals in the enveloping algebra of the Lie superalgebra $\textrm {sl}(2,1)$, J. Algebra 159 (1993), no. 2, 306–331. MR 1231215, DOI 10.1006/jabr.1993.1158
- Ivan Penkov and Vera Serganova, Generic irreducible representations of finite-dimensional Lie superalgebras, Internat. J. Math. 5 (1994), no. 3, 389–419. MR 1274125, DOI 10.1142/S0129167X9400022X
- Manfred Scheunert, The theory of Lie superalgebras, Lecture Notes in Mathematics, vol. 716, Springer, Berlin, 1979. An introduction. MR 537441, DOI 10.1007/BFb0070929
- Vera Serganova, Kazhdan-Lusztig polynomials and character formula for the Lie superalgebra ${\mathfrak {g}}{\mathfrak {l}}(m|n)$, Selecta Math. (N.S.) 2 (1996), no. 4, 607–651. MR 1443186, DOI 10.1007/PL00001385
- Wolfgang Soergel, The prime spectrum of the enveloping algebra of a reductive Lie algebra, Math. Z. 204 (1990), no. 4, 559–581. MR 1062136, DOI 10.1007/BF02570893
- R. B. Warfield Jr., Prime ideals in ring extensions, J. London Math. Soc. (2) 28 (1983), no. 3, 453–460. MR 724714, DOI 10.1112/jlms/s2-28.3.453
- Robert B. Warfield Jr., Noetherian ring extensions with trace conditions, Trans. Amer. Math. Soc. 331 (1992), no. 1, 449–463. MR 1080737, DOI 10.1090/S0002-9947-1992-1080737-4
Bibliographic Information
- Edward S. Letzter
- Affiliation: Department of Mathematics, Texas A&M University, College Station, Texas 77843
- MR Author ID: 113075
- Email: letzter@math.tamu.edu
- Received by editor(s): November 20, 1998
- Received by editor(s) in revised form: July 14, 1999
- Published electronically: October 5, 1999
- Additional Notes: This research was partially supported by grants from the National Science Foundation.
- © Copyright 1999 American Mathematical Society
- Journal: Represent. Theory 3 (1999), 354-372
- MSC (1991): Primary 16P40, 17A70; Secondary 17B35
- DOI: https://doi.org/10.1090/S1088-4165-99-00062-X
- MathSciNet review: 1711503