Symmetric polynomials and $U_q(\widehat {sl}_2)$
HTML articles powered by AMS MathViewer
- by Naihuan Jing
- Represent. Theory 4 (2000), 46-63
- DOI: https://doi.org/10.1090/S1088-4165-00-00065-0
- Published electronically: February 7, 2000
- PDF | Request permission
Abstract:
We study the explicit formula of Lusztig’s integral forms of the level one quantum affine algebra $U_q(\widehat {sl}_2)$ in the endomorphism ring of symmetric functions in infinitely many variables tensored with the group algebra of $\mathbb Z$. Schur functions are realized as certain orthonormal basis vectors in the vertex representation associated to the standard Heisenberg algebra. In this picture the Littlewood-Richardson rule is expressed by integral formulas, and is used to define the action of Lusztig’s $\mathbb Z[q, q^{-1}]$-form of $U_q(\widehat {sl}_2)$ on Schur polynomials. As a result the $\mathbb Z[q, q^{-1}]$-lattice of Schur functions tensored with the group algebra contains Lusztig’s integral lattice.References
- J. Beck, V. Chari and A. Pressley, An algebraic characterization of the affine canonical basis, Duke Math. J. 99 (1999), 455-487.
- J. Beck, I. B. Frenkel and N. Jing, Canonical basis and Macdonald polynomials, Adv. in Math. 140 (1998), 95-127.
- V. Chari and N. Jing, Realization of level one representations of $U_q(\hat {\mathfrak g})$ at a root of unity, math.QA/9909118.
- Christophe Carré and Jean-Yves Thibon, Plethysm and vertex operators, Adv. in Appl. Math. 13 (1992), no. 4, 390–403. MR 1190119, DOI 10.1016/0196-8858(92)90018-R
- Vyjayanthi Chari and Andrew Pressley, Quantum affine algebras at roots of unity, Represent. Theory 1 (1997), 280–328. MR 1463925, DOI 10.1090/S1088-4165-97-00030-7
- Etsur\B{o} Date, Masaki Kashiwara, Michio Jimbo, and Tetsuji Miwa, Transformation groups for soliton equations, Nonlinear integrable systems—classical theory and quantum theory (Kyoto, 1981) World Sci. Publishing, Singapore, 1983, pp. 39–119. MR 725700
- I. B. Frenkel, Two constructions of affine Lie algebra representations and boson-fermion correspondence in quantum field theory, J. Functional Analysis 44 (1981), no. 3, 259–327. MR 643037, DOI 10.1016/0022-1236(81)90012-4
- I. B. Frenkel, Lectures at Yale University, 1986.
- Igor B. Frenkel and Nai Huan Jing, Vertex representations of quantum affine algebras, Proc. Nat. Acad. Sci. U.S.A. 85 (1988), no. 24, 9373–9377. MR 973376, DOI 10.1073/pnas.85.24.9373
- Howard Garland, The arithmetic theory of loop algebras, J. Algebra 53 (1978), no. 2, 480–551. MR 502647, DOI 10.1016/0021-8693(78)90294-6
- Adriano M. Garsia, Orthogonality of Milne’s polynomials and raising operators, Discrete Math. 99 (1992), no. 1-3, 247–264. MR 1158790, DOI 10.1016/0012-365X(92)90375-P
- Takahiro Hayashi, $q$-analogues of Clifford and Weyl algebras—spinor and oscillator representations of quantum enveloping algebras, Comm. Math. Phys. 127 (1990), no. 1, 129–144. MR 1036118, DOI 10.1007/BF02096497
- Gordon James and Adalbert Kerber, The representation theory of the symmetric group, Encyclopedia of Mathematics and its Applications, vol. 16, Addison-Wesley Publishing Co., Reading, Mass., 1981. With a foreword by P. M. Cohn; With an introduction by Gilbert de B. Robinson. MR 644144
- Nai Huan Jing, Vertex operators, symmetric functions, and the spin group $\Gamma _n$, J. Algebra 138 (1991), no. 2, 340–398. MR 1102815, DOI 10.1016/0021-8693(91)90177-A
- Nai Huan Jing, Vertex operators and Hall-Littlewood symmetric functions, Adv. Math. 87 (1991), no. 2, 226–248. MR 1112626, DOI 10.1016/0001-8708(91)90072-F
- Nai Huan Jing, Vertex operators and generalized symmetric functions, Proceedings of the Conference on Quantum Topology (Manhattan, KS, 1993) World Sci. Publ., River Edge, NJ, 1994, pp. 111–126. MR 1309930
- Nai Huan Jing, Boson-fermion correspondence for Hall-Littlewood polynomials, J. Math. Phys. 36 (1995), no. 12, 7073–7080. MR 1359680, DOI 10.1063/1.531207
- Naihuan Jing, Quantum Kac-Moody algebras and vertex representations, Lett. Math. Phys. 44 (1998), no. 4, 261–271. MR 1627867, DOI 10.1023/A:1007493921464
- M. Kashiwara, Global crystal bases of quantum groups, Duke Math. J. 73 (1993), 383–413.
- Victor G. Kac, Infinite-dimensional Lie algebras, 3rd ed., Cambridge University Press, Cambridge, 1990. MR 1104219, DOI 10.1017/CBO9780511626234
- Alain Lascoux, Bernard Leclerc, and Jean-Yves Thibon, Ribbon tableaux, Hall-Littlewood functions and unipotent varieties, Sém. Lothar. Combin. 34 (1995), Art. B34g, approx. 23. MR 1399754
- James Lepowsky and Mirko Primc, Structure of the standard modules for the affine Lie algebra $A^{(1)}_1$, Contemporary Mathematics, vol. 46, American Mathematical Society, Providence, RI, 1985. MR 814303, DOI 10.1090/conm/046
- George Lusztig, Introduction to quantum groups, Progress in Mathematics, vol. 110, Birkhäuser Boston, Inc., Boston, MA, 1993. MR 1227098
- I. G. Macdonald, Symmetric functions and Hall polynomials, 2nd ed., Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1995. With contributions by A. Zelevinsky; Oxford Science Publications. MR 1354144
- Kailash Misra and Tetsuji Miwa, Crystal base for the basic representation of $U_q(\mathfrak {s}\mathfrak {l}(n))$, Comm. Math. Phys. 134 (1990), no. 1, 79–88. MR 1079801, DOI 10.1007/BF02102090
- Andrey V. Zelevinsky, Representations of finite classical groups, Lecture Notes in Mathematics, vol. 869, Springer-Verlag, Berlin-New York, 1981. A Hopf algebra approach. MR 643482, DOI 10.1007/BFb0090287
Bibliographic Information
- Naihuan Jing
- Affiliation: Department of Mathematics, North Carolina State University, Raleigh, North Carolina 27695-8205
- MR Author ID: 232836
- Email: jing@math.ncsu.edu
- Received by editor(s): February 17, 1999
- Received by editor(s) in revised form: December 10, 1999
- Published electronically: February 7, 2000
- Additional Notes: Research supported in part by NSA grant MDA904-97-1-0062 and Mathematical Sciences Research Institute.
- © Copyright 2000 American Mathematical Society
- Journal: Represent. Theory 4 (2000), 46-63
- MSC (2000): Primary 17B; Secondary 5E
- DOI: https://doi.org/10.1090/S1088-4165-00-00065-0
- MathSciNet review: 1740180