Harish-Chandra modules for quantum symmetric pairs
HTML articles powered by AMS MathViewer
- by Gail Letzter
- Represent. Theory 4 (2000), 64-96
- DOI: https://doi.org/10.1090/S1088-4165-00-00087-X
- Published electronically: February 18, 2000
- PDF | Request permission
Abstract:
Let $U$ denote the quantized enveloping algebra associated to a semisimple Lie algebra. This paper studies Harish-Chandra modules for the recently constructed quantum symmetric pairs $U$,$B$ in the maximally split case. Finite-dimensional $U$-modules are shown to be Harish-Chandra as well as the $B$-unitary socle of an arbitrary module. A classification of finite-dimensional spherical modules analogous to the classical case is obtained. A one-to-one correspondence between a large class of natural finite-dimensional simple $B$-modules and their classical counterparts is established up to the action of almost $B$-invariant elements.References
- Vyjayanthi Chari and Andrew Pressley, A guide to quantum groups, Cambridge University Press, Cambridge, 1995. Corrected reprint of the 1994 original. MR 1358358
- Corrado De Concini and Victor G. Kac, Representations of quantum groups at roots of $1$, Operator algebras, unitary representations, enveloping algebras, and invariant theory (Paris, 1989) Progr. Math., vol. 92, Birkhäuser Boston, Boston, MA, 1990, pp. 471–506. MR 1103601
- Mathijs S. Dijkhuizen, Some remarks on the construction of quantum symmetric spaces, Acta Appl. Math. 44 (1996), no. 1-2, 59–80. Representations of Lie groups, Lie algebras and their quantum analogues. MR 1407040, DOI 10.1007/BF00116516
- Jacques Dixmier, Algèbres enveloppantes, Cahiers Scientifiques, Fasc. XXXVII, Gauthier-Villars Éditeur, Paris-Brussels-Montreal, Que., 1974 (French). MR 0498737
- A. M. Gavrilik and N. Z. Iorgov, $q$-deformed inhomogeneous algebras $U_q(\textrm {iso}_n)$ and their representations, Symmetry in nonlinear mathematical physics, Vol. 1, 2 (Kyiv, 1997) Natl. Acad. Sci. Ukraine, Inst. Math., Kiev, 1997, pp. 384–392. MR 1601049
- Nathan Jacobson, Basic algebra. II, W. H. Freeman and Co., San Francisco, Calif., 1980. MR 571884
- Jens C. Jantzen, Kontravariante Formen auf induzierten Darstellungen halbeinfacher Lie-Algebren, Math. Ann. 226 (1977), no. 1, 53–65. MR 439902, DOI 10.1007/BF01391218
- Anthony Joseph and Gail Letzter, Local finiteness of the adjoint action for quantized enveloping algebras, J. Algebra 153 (1992), no. 2, 289–318. MR 1198203, DOI 10.1016/0021-8693(92)90157-H
- Anthony Joseph and Gail Letzter, Separation of variables for quantized enveloping algebras, Amer. J. Math. 116 (1994), no. 1, 127–177. MR 1262429, DOI 10.2307/2374984
- Anthony Joseph, Quantum groups and their primitive ideals, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 29, Springer-Verlag, Berlin, 1995. MR 1315966, DOI 10.1007/978-3-642-78400-2
- Anthony Joseph, On a Harish-Chandra homomorphism, C. R. Acad. Sci. Paris Sér. I Math. 324 (1997), no. 7, 759–764 (English, with English and French summaries). MR 1446576, DOI 10.1016/S0764-4442(97)86940-6
- Mâlek Stefan Kébé, ${\scr O}$-algèbres quantiques, C. R. Acad. Sci. Paris Sér. I Math. 322 (1996), no. 1, 1–4 (French, with English and French summaries). MR 1390810
- Anthony W. Knapp, Lie groups beyond an introduction, Progress in Mathematics, vol. 140, Birkhäuser Boston, Inc., Boston, MA, 1996. MR 1399083, DOI 10.1007/978-1-4757-2453-0
- Bertram Kostant, On the existence and irreducibility of certain series of representations, Lie groups and their representations (Proc. Summer School, Bolyai János Math. Soc., Budapest, 1971) Halsted, New York, 1975, pp. 231–329. MR 0399361
- Bertram Kostant, Lie group representations on polynomial rings, Amer. J. Math. 85 (1963), 327–404. MR 158024, DOI 10.2307/2373130
- Gail Letzter, Subalgebras which appear in quantum Iwasawa decompositions, Canad. J. Math. 49 (1997), no. 6, 1206–1223. MR 1611652, DOI 10.4153/CJM-1997-059-4
- G. Letzter, Symmetric Pairs for Quantized Enveloping algebras Journal of Algebra, 220, (1999), 729-767.
- Masatoshi Noumi, Macdonald’s symmetric polynomials as zonal spherical functions on some quantum homogeneous spaces, Adv. Math. 123 (1996), no. 1, 16–77. MR 1413836, DOI 10.1006/aima.1996.0066
- Masatoshi Noumi and Tetsuya Sugitani, Quantum symmetric spaces and related $q$-orthogonal polynomials, Group theoretical methods in physics (Toyonaka, 1994) World Sci. Publ., River Edge, NJ, 1995, pp. 28–40. MR 1413733
- M. Rosso, Groupes Quantiques, Representations Lineaires et Applications, Thesis Paris 7, (1990).
- Marc Rosso, Finite-dimensional representations of the quantum analog of the enveloping algebra of a complex simple Lie algebra, Comm. Math. Phys. 117 (1988), no. 4, 581–593. MR 953821, DOI 10.1007/BF01218386
Bibliographic Information
- Gail Letzter
- Affiliation: Department of Mathematics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061
- MR Author ID: 228201
- Email: letzter@math.vt.edu
- Received by editor(s): October 22, 1999
- Received by editor(s) in revised form: November 19, 1999
- Published electronically: February 18, 2000
- Additional Notes: The author was supported by NSF grant no. DMS-9753211
- © Copyright 2000 American Mathematical Society
- Journal: Represent. Theory 4 (2000), 64-96
- MSC (2000): Primary 17B37
- DOI: https://doi.org/10.1090/S1088-4165-00-00087-X
- MathSciNet review: 1742961