Large Schubert varieties
HTML articles powered by AMS MathViewer
- by Michel Brion and Patrick Polo PDF
- Represent. Theory 4 (2000), 97-126 Request permission
Abstract:
For a semisimple adjoint algebraic group $G$ and a Borel subgroup $B$, consider the double classes $BwB$ in $G$ and their closures in the canonical compactification of $G$; we call these closures large Schubert varieties. We show that these varieties are normal and Cohen-Macaulay; we describe their Picard group and the spaces of sections of their line bundles. As an application, we construct geometrically a filtration à la van der Kallen of the algebra of regular functions on $B$. We also construct a degeneration of the flag variety $G/B$ embedded diagonally in $G/B\times G/B$, into a union of Schubert varieties. This yields formulae for the class of the diagonal of $G/B\times G/B$ in $T$-equivariant $K$-theory, where $T$ is a maximal torus of $B$.References
- H. Bass and W. Haboush, Linearizing certain reductive group actions, Trans. Amer. Math. Soc. 292 (1985), no. 2, 463–482. MR 808732, DOI 10.1090/S0002-9947-1985-0808732-4
- W. Borho, J.-L. Brylinski, and R. MacPherson, Nilpotent orbits, primitive ideals, and characteristic classes, Progress in Mathematics, vol. 78, Birkhäuser Boston, Inc., Boston, MA, 1989. A geometric perspective in ring theory. MR 1034480, DOI 10.1007/978-1-4612-4558-2
- N. Bourbaki, Groupes et algèbres de Lie, Chap. 4,5,6, Masson, 1981.
- Michel Brion, The behaviour at infinity of the Bruhat decomposition, Comment. Math. Helv. 73 (1998), no. 1, 137–174. MR 1610599, DOI 10.1007/s000140050049
- M. Brion: On orbit closures of Borel subgroups in spherical varieties, math.AG/9908094.
- Winfried Bruns and Jürgen Herzog, Cohen-Macaulay rings, Cambridge Studies in Advanced Mathematics, vol. 39, Cambridge University Press, Cambridge, 1993. MR 1251956
- C. Chevalley, Sur les décompositions cellulaires des espaces $G/B$, Algebraic groups and their generalizations: classical methods (University Park, PA, 1991) Proc. Sympos. Pure Math., vol. 56, Amer. Math. Soc., Providence, RI, 1994, pp. 1–23 (French). With a foreword by Armand Borel. MR 1278698, DOI 10.1090/pspum/056.1/1278698
- Romuald Dąbrowski, A simple proof of a necessary and sufficient condition for the existence of nontrivial global sections of a line bundle on a Schubert variety, Kazhdan-Lusztig theory and related topics (Chicago, IL, 1989) Contemp. Math., vol. 139, Amer. Math. Soc., Providence, RI, 1992, pp. 113–120. MR 1197831, DOI 10.1090/conm/139/1197831
- C. De Concini and C. Procesi, Complete symmetric varieties, Invariant theory (Montecatini, 1982) Lecture Notes in Math., vol. 996, Springer, Berlin, 1983, pp. 1–44. MR 718125, DOI 10.1007/BFb0063234
- P. Erdös, On the distribution of normal point groups, Proc. Nat. Acad. Sci. U.S.A. 26 (1940), 294–297. MR 2000, DOI 10.1073/pnas.26.4.294
- Vinay V. Deodhar, Some characterizations of Bruhat ordering on a Coxeter group and determination of the relative Möbius function, Invent. Math. 39 (1977), no. 2, 187–198. MR 435249, DOI 10.1007/BF01390109
- William Fulton, Intersection theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 2, Springer-Verlag, Berlin, 1984. MR 732620, DOI 10.1007/978-3-662-02421-8
- W. Fulton, R. MacPherson, F. Sottile, and B. Sturmfels, Intersection theory on spherical varieties, J. Algebraic Geom. 4 (1995), no. 1, 181–193. MR 1299008
- Jens Carsten Jantzen, Representations of algebraic groups, Pure and Applied Mathematics, vol. 131, Academic Press, Inc., Boston, MA, 1987. MR 899071
- G. Kempf, Finn Faye Knudsen, D. Mumford, and B. Saint-Donat, Toroidal embeddings. I, Lecture Notes in Mathematics, Vol. 339, Springer-Verlag, Berlin-New York, 1973. MR 0335518, DOI 10.1007/BFb0070318
- George R. Kempf and A. Ramanathan, Multicones over Schubert varieties, Invent. Math. 87 (1987), no. 2, 353–363. MR 870733, DOI 10.1007/BF01389420
- Friedrich Knop, The Luna-Vust theory of spherical embeddings, Proceedings of the Hyderabad Conference on Algebraic Groups (Hyderabad, 1989) Manoj Prakashan, Madras, 1991, pp. 225–249. MR 1131314
- Friedrich Knop, On the set of orbits for a Borel subgroup, Comment. Math. Helv. 70 (1995), no. 2, 285–309. MR 1324631, DOI 10.1007/BF02566009
- Bertram Kostant and Shrawan Kumar, $T$-equivariant $K$-theory of generalized flag varieties, J. Differential Geom. 32 (1990), no. 2, 549–603. MR 1072919, DOI 10.4310/jdg/1214445320
- Hanspeter Kraft, Peter Slodowy, and Tonny A. Springer (eds.), Algebraische Transformationsgruppen und Invariantentheorie, DMV Seminar, vol. 13, Birkhäuser Verlag, Basel, 1989 (German). MR 1044582, DOI 10.1007/978-3-0348-7662-9
- Niels Lauritzen and Jesper Funch Thomsen, Frobenius splitting and hyperplane sections of flag manifolds, Invent. Math. 128 (1997), no. 3, 437–442. MR 1452428, DOI 10.1007/s002220050147
- O. Mathieu: Positivity of some intersections in $K_0(G/B)$, preprint, 1998.
- Hideyuki Matsumura, Commutative ring theory, 2nd ed., Cambridge Studies in Advanced Mathematics, vol. 8, Cambridge University Press, Cambridge, 1989. Translated from the Japanese by M. Reid. MR 1011461
- Patrick Polo, Variétés de Schubert et excellentes filtrations, Astérisque 173-174 (1989), 10–11, 281–311 (French, with English summary). Orbites unipotentes et représentations, III. MR 1021515
- A. Ramanathan, Schubert varieties are arithmetically Cohen-Macaulay, Invent. Math. 80 (1985), no. 2, 283–294. MR 788411, DOI 10.1007/BF01388607
- A. Ramanathan, Equations defining Schubert varieties and Frobenius splitting of diagonals, Inst. Hautes Études Sci. Publ. Math. 65 (1987), 61–90. MR 908216, DOI 10.1007/BF02698935
- Elisabetta Strickland, A vanishing theorem for group compactifications, Math. Ann. 277 (1987), no. 1, 165–171. MR 884653, DOI 10.1007/BF01457285
- Wilberd van der Kallen, Longest weight vectors and excellent filtrations, Math. Z. 201 (1989), no. 1, 19–31. MR 990185, DOI 10.1007/BF01161991
- Wilberd van der Kallen, Lectures on Frobenius splittings and $B$-modules, Published for the Tata Institute of Fundamental Research, Bombay; by Springer-Verlag, Berlin, 1993. Notes by S. P. Inamdar. MR 1248828, DOI 10.1007/978-3-662-02874-2
Additional Information
- Michel Brion
- Affiliation: Université de Grenoble I, Département de Mathématiques, Institut Fourier, UMR 5582 du CNRS, 38402 Saint-Martin d’Hères Cedex, France
- MR Author ID: 41725
- Email: Michel.Brion@ujf-grenoble.fr
- Patrick Polo
- Affiliation: Université Paris Nord, Département de Mathématiques, L.A.G.A., UMR 7539 du CNRS, 93430 Villetaneuse, France
- Email: polo@math.univ-paris13.fr
- Received by editor(s): April 27, 1999
- Received by editor(s) in revised form: October 9, 1999
- Published electronically: February 23, 2000
- © Copyright 2000 American Mathematical Society
- Journal: Represent. Theory 4 (2000), 97-126
- MSC (2000): Primary 14M15, 14L30, 20G05, 19E08
- DOI: https://doi.org/10.1090/S1088-4165-00-00069-8
- MathSciNet review: 1789463