On square-integrable representations of classical $p$-adic groups II
HTML articles powered by AMS MathViewer
- by Chris Jantzen
- Represent. Theory 4 (2000), 127-180
- DOI: https://doi.org/10.1090/S1088-4165-00-00081-9
- Published electronically: February 23, 2000
- PDF | Request permission
Abstract:
In this paper, we continue our study of non-supercuspidal discrete series for the classical groups $Sp(2n,F)$, $SO(2n+1,F)$, where $F$ is $p$-adic.References
- Anne-Marie Aubert, Dualité dans le groupe de Grothendieck de la catégorie des représentations lisses de longueur finie d’un groupe réductif $p$-adique, Trans. Amer. Math. Soc. 347 (1995), no. 6, 2179–2189 (French, with English summary). MR 1285969, DOI 10.1090/S0002-9947-1995-1285969-0
- J. Bernstein, P. Deligne, and D. Kazhdan, Trace Paley-Wiener theorem for reductive $p$-adic groups, J. Analyse Math. 47 (1986), 180–192. MR 874050, DOI 10.1007/BF02792538
- I. N. Bernstein and A. V. Zelevinsky, Induced representations of reductive ${\mathfrak {p}}$-adic groups. I, Ann. Sci. École Norm. Sup. (4) 10 (1977), no. 4, 441–472. MR 579172, DOI 10.24033/asens.1333
- Armand Borel and Nolan R. Wallach, Continuous cohomology, discrete subgroups, and representations of reductive groups, Annals of Mathematics Studies, No. 94, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1980. MR 554917
- W. Casselman, Introduction to the theory of admissible representations of $p$-adic reductive groups, preprint.
- David Goldberg, Reducibility of induced representations for $\textrm {Sp}(2n)$ and $\textrm {SO}(n)$, Amer. J. Math. 116 (1994), no. 5, 1101–1151. MR 1296726, DOI 10.2307/2374942
- Chris Jantzen, Reducibility of certain representations for symplectic and odd-orthogonal groups, Compositio Math. 104 (1996), no. 1, 55–63. MR 1420710
- Chris Jantzen, On supports of induced representations for symplectic and odd-orthogonal groups, Amer. J. Math. 119 (1997), no. 6, 1213–1262. MR 1481814, DOI 10.1353/ajm.1997.0039
- Chris Jantzen, Some remarks on degenerate principal series, Pacific J. Math. 186 (1998), no. 1, 67–87. MR 1665057, DOI 10.2140/pjm.1998.186.67
- C. Jantzen, On square-integrable representations of classical $p$-adic groups, to appear, Can. J. Math.
- Colette Mœglin, Représentations unipotentes et formes automorphes de carré intégrable, Forum Math. 6 (1994), no. 6, 651–744 (French, with English summary). MR 1300285, DOI 10.1515/form.1994.6.651
- C. Mœglin, Normalisation des opérateurs d’entrelacement et réductibilité des induites des cuspidales; le cas des groupes classiques $p$-adiques, to appear, Ann. of Math.
- C. Mœglin, Sur la classification des séries discrètes des groupes classiques; paramat̀res de Langlands et exhaustivité, preprint.
- Goran Muić, Some results on square integrable representations; irreducibility of standard representations, Internat. Math. Res. Notices 14 (1998), 705–726. MR 1637097, DOI 10.1155/S1073792898000427
- F. Murnaghan and J. Repka, Reducibility of some induced representations of split classical $p$-adic groups, Compositio Math. 114 (1998), no. 3, 263–313. MR 1665768, DOI 10.1023/A:1000504704324
- Mark Reeder, Hecke algebras and harmonic analysis on $p$-adic groups, Amer. J. Math. 119 (1997), no. 1, 225–249. MR 1428064, DOI 10.1353/ajm.1997.0005
- Peter Schneider and Ulrich Stuhler, Representation theory and sheaves on the Bruhat-Tits building, Inst. Hautes Études Sci. Publ. Math. 85 (1997), 97–191. MR 1471867, DOI 10.1007/BF02699536
- Freydoon Shahidi, A proof of Langlands’ conjecture on Plancherel measures; complementary series for $p$-adic groups, Ann. of Math. (2) 132 (1990), no. 2, 273–330. MR 1070599, DOI 10.2307/1971524
- Freydoon Shahidi, Twisted endoscopy and reducibility of induced representations for $p$-adic groups, Duke Math. J. 66 (1992), no. 1, 1–41. MR 1159430, DOI 10.1215/S0012-7094-92-06601-4
- Allan J. Silberger, The Langlands quotient theorem for $p$-adic groups, Math. Ann. 236 (1978), no. 2, 95–104. MR 507262, DOI 10.1007/BF01351383
- Allan J. Silberger, Special representations of reductive $p$-adic groups are not integrable, Ann. of Math. (2) 111 (1980), no. 3, 571–587. MR 577138, DOI 10.2307/1971110
- Marko Tadić, Representations of $p$-adic symplectic groups, Compositio Math. 90 (1994), no. 2, 123–181. MR 1266251
- Marko Tadić, Structure arising from induction and Jacquet modules of representations of classical $p$-adic groups, J. Algebra 177 (1995), no. 1, 1–33. MR 1356358, DOI 10.1006/jabr.1995.1284
- M. Tadić, On reducibility of parabolic induction, Israel J. Math., 107 (1998), 159-210.
- Marko Tadić, On regular square integrable representations of $p$-adic groups, Amer. J. Math. 120 (1998), no. 1, 159–210. MR 1600280, DOI 10.1353/ajm.1998.0007
- M. Tadić, On square integrable representations of classical $p$-adic groups, preprint.
- M. Tadić, Square integrable representations of classical $p$-adic groups corresponding to segments, Represent. Theory, 3 (1999), 58-89.
- A. V. Zelevinsky, Induced representations of reductive ${\mathfrak {p}}$-adic groups. II. On irreducible representations of $\textrm {GL}(n)$, Ann. Sci. École Norm. Sup. (4) 13 (1980), no. 2, 165–210. MR 584084, DOI 10.24033/asens.1379
- Y. Zhang, L-packets and reducibilities, J. Reine Angew. Math., 510 (1999), 83-102.
Bibliographic Information
- Chris Jantzen
- Affiliation: Department of Mathematics, Ohio State University, Columbus, Ohio 43210
- MR Author ID: 316181
- Email: jantzen@math.ohio-state.edu
- Received by editor(s): July 28, 1999
- Received by editor(s) in revised form: October 18, 1999
- Published electronically: February 23, 2000
- © Copyright 2000 American Mathematical Society
- Journal: Represent. Theory 4 (2000), 127-180
- MSC (2000): Primary 22E50
- DOI: https://doi.org/10.1090/S1088-4165-00-00081-9
- MathSciNet review: 1789464