On Laguerre polynomials, Bessel functions, Hankel transform and a series in the unitary dual of the simply-connected covering group of $Sl(2,\mathbb R)$
HTML articles powered by AMS MathViewer
- by Bertram Kostant PDF
- Represent. Theory 4 (2000), 181-224 Request permission
Abstract:
Analogous to the holomorphic discrete series of $Sl(2,\mathbb R)$ there is a continuous family $\{\pi _r\}$, $-1<r<\infty$, of irreducible unitary representations of $G$, the simply-connected covering group of $Sl(2,\mathbb R)$. A construction of this series is given in this paper using classical function theory. For all $r$ the Hilbert space is $L_2((0,\infty ))$. First of all one exhibits a representation, $D_r$, of $\mathfrak g= \mathit {Lie} G$ by second order differential operators on $C^\infty ((0,\infty ))$. For $x\in (0,\infty )$, $-1<r<\infty$ and $n\in \mathbb Z_+$ let $\varphi _n^{(r)}(x)= e^{-x}x^{\frac {r}{2}}L_n^{(r)}(2x)$ where $L_n^{(r)}(x)$ is the Laguerre polynomial with parameters $\{n,r\}$. Let $\mathcal H_r^{HC}$ be the span of $\varphi _n^{(r)}$ for $n\in \mathbb Z_+$. Next one shows, using a famous result of E. Nelson, that $D_r|{\mathcal H}_r^{HC}$ exponentiates to the unitary representation $\pi _r$ of $G$. The power of Nelson’s theorem is exhibited here by the fact that if $0<r<1$, one has $D_r=D_{-r}$, whereas $\pi _r$ is inequivalent to $\pi _{-r}$. For $r=\frac 12$, the elements in the pair $\{\pi _{\frac {1}{2}},\pi _{-\frac {1}{2}}\}$ are the two components of the metaplectic representation. Using a result of G.H. Hardy one shows that the Hankel transform is given by $\pi _r(a)$ where $a\in G$ induces the non-trivial element of a Weyl group. As a consequence, continuity properties and enlarged domains of definition, of the Hankel transform follow from standard facts in representation theory. Also, if $J_r$ is the classical Bessel function, then for any $y\in (0,\infty )$, the function $J_{r,y}(x)=J_r(2\sqrt {xy})$ is a Whittaker vector. Other weight vectors are given and the highest weight vector is given by a limiting behavior at $0$.References
- Lawrence C. Biedenharn and James D. Louck, The Racah-Wigner algebra in quantum theory, Encyclopedia of Mathematics and its Applications, vol. 9, Addison-Wesley Publishing Co., Reading, Mass., 1981. With a foreword by Peter A. Carruthers; With an introduction by George W. Mackey. MR 636504
- Pierre Cartier, Vecteurs différentiables dans les représentations unitaires des groupes de Lie, Séminaire Bourbakt (1974/1975), Exp. No. 454, Lecture Notes in Math., Vol. 514, Springer, Berlin, 1976, pp. 20–34 (French). MR 0460541
- Hongming Ding and Kenneth I. Gross, Operator-valued Bessel functions on Jordan algebras, J. Reine Angew. Math. 435 (1993), 157–196. MR 1203914, DOI 10.1515/crll.1993.435.157 [Ha]Ha G. Hardy, Summation of a series of polynomials of Laguerre, Journ. London Math. Soc., 7 (1932), 138-139, 192.
- Tadasi Nakayama, On Frobeniusean algebras. I, Ann. of Math. (2) 40 (1939), 611–633. MR 16, DOI 10.2307/1968946
- Sergio Sispanov, Generalización del teorema de Laguerre, Bol. Mat. 12 (1939), 113–117 (Spanish). MR 3
- Bertram Kostant, On Whittaker vectors and representation theory, Invent. Math. 48 (1978), no. 2, 101–184. MR 507800, DOI 10.1007/BF01390249
- Edward Nelson, Analytic vectors, Ann. of Math. (2) 70 (1959), 572–615. MR 107176, DOI 10.2307/1970331
- L. Pukánszky, The Plancherel formula for the universal covering group of $\textrm {SL}(R,\,2)$, Math. Ann. 156 (1964), 96–143. MR 170981, DOI 10.1007/BF01359927
- M. Vergne and H. Rossi, Analytic continuation of the holomorphic discrete series of a semi-simple Lie group, Acta Math. 136 (1976), no. 1-2, 1–59. MR 480883, DOI 10.1007/BF02392042
- Charles Hopkins, Rings with minimal condition for left ideals, Ann. of Math. (2) 40 (1939), 712–730. MR 12, DOI 10.2307/1968951
- C. J. Everett Jr., Annihilator ideals and representation iteration for abstract rings, Duke Math. J. 5 (1939), 623–627. MR 13, DOI 10.1215/S0012-7094-51-01817-0
- T. Venkatarayudu, The $7$-$15$ problem, Proc. Indian Acad. Sci., Sect. A. 9 (1939), 531. MR 0000001, DOI 10.1090/gsm/058
- Michael E. Taylor, Noncommutative harmonic analysis, Mathematical Surveys and Monographs, vol. 22, American Mathematical Society, Providence, RI, 1986. MR 852988, DOI 10.1090/surv/022
- Garth Warner, Harmonic analysis on semi-simple Lie groups. I, Die Grundlehren der mathematischen Wissenschaften, Band 188, Springer-Verlag, New York-Heidelberg, 1972. MR 0498999, DOI 10.1007/978-3-642-50275-0
- Nolan R. Wallach, The analytic continuation of the discrete series. I, II, Trans. Amer. Math. Soc. 251 (1979), 1–17, 19–37. MR 531967, DOI 10.1090/S0002-9947-1979-0531967-2
- I. M. Sheffer, Some properties of polynomial sets of type zero, Duke Math. J. 5 (1939), 590–622. MR 81, DOI 10.1215/S0012-7094-39-00549-1 [Wt]Wt G. Watson, Theory of Bessel Functions, Cambridge Univ. Press, 1966. [Yo]Yo K. Yosida, Functional Analysis, Grundlehren, 123, Springer-Verlag, 1971.
Additional Information
- Bertram Kostant
- Affiliation: Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
- Email: kostant@math.mit.edu
- Received by editor(s): December 2, 1999
- Received by editor(s) in revised form: January 21, 2000
- Published electronically: April 26, 2000
- Additional Notes: Research supported in part by NSF grant DMS-9625941 and in part by the KG&G Foundation
- © Copyright 2000 American Mathematical Society
- Journal: Represent. Theory 4 (2000), 181-224
- MSC (2000): Primary 22D10, 22E70, 33Cxx, 33C10, 33C45, 42C05, 43-xx, 43A65
- DOI: https://doi.org/10.1090/S1088-4165-00-00096-0
- MathSciNet review: 1755901