## On Laguerre polynomials, Bessel functions, Hankel transform and a series in the unitary dual of the simply-connected covering group of $Sl(2,\mathbb R)$

HTML articles powered by AMS MathViewer

- by Bertram Kostant PDF
- Represent. Theory
**4**(2000), 181-224 Request permission

## Abstract:

Analogous to the holomorphic discrete series of $Sl(2,\mathbb R)$ there is a continuous family $\{\pi _r\}$, $-1<r<\infty$, of irreducible unitary representations of $G$, the simply-connected covering group of $Sl(2,\mathbb R)$. A construction of this series is given in this paper using classical function theory. For all $r$ the Hilbert space is $L_2((0,\infty ))$. First of all one exhibits a representation, $D_r$, of $\mathfrak g= \mathit {Lie} G$ by second order differential operators on $C^\infty ((0,\infty ))$. For $x\in (0,\infty )$, $-1<r<\infty$ and $n\in \mathbb Z_+$ let $\varphi _n^{(r)}(x)= e^{-x}x^{\frac {r}{2}}L_n^{(r)}(2x)$ where $L_n^{(r)}(x)$ is the Laguerre polynomial with parameters $\{n,r\}$. Let $\mathcal H_r^{HC}$ be the span of $\varphi _n^{(r)}$ for $n\in \mathbb Z_+$. Next one shows, using a famous result of E. Nelson, that $D_r|{\mathcal H}_r^{HC}$ exponentiates to the unitary representation $\pi _r$ of $G$. The power of Nelson’s theorem is exhibited here by the fact that if $0<r<1$, one has $D_r=D_{-r}$, whereas $\pi _r$ is inequivalent to $\pi _{-r}$. For $r=\frac 12$, the elements in the pair $\{\pi _{\frac {1}{2}},\pi _{-\frac {1}{2}}\}$ are the two components of the metaplectic representation. Using a result of G.H. Hardy one shows that the Hankel transform is given by $\pi _r(a)$ where $a\in G$ induces the non-trivial element of a Weyl group. As a consequence, continuity properties and enlarged domains of definition, of the Hankel transform follow from standard facts in representation theory. Also, if $J_r$ is the classical Bessel function, then for any $y\in (0,\infty )$, the function $J_{r,y}(x)=J_r(2\sqrt {xy})$ is a Whittaker vector. Other weight vectors are given and the highest weight vector is given by a limiting behavior at $0$.## References

- Lawrence C. Biedenharn and James D. Louck,
*The Racah-Wigner algebra in quantum theory*, Encyclopedia of Mathematics and its Applications, vol. 9, Addison-Wesley Publishing Co., Reading, Mass., 1981. With a foreword by Peter A. Carruthers; With an introduction by George W. Mackey. MR**636504** - Pierre Cartier,
*Vecteurs différentiables dans les représentations unitaires des groupes de Lie*, Séminaire Bourbakt (1974/1975), Exp. No. 454, Lecture Notes in Math., Vol. 514, Springer, Berlin, 1976, pp. 20–34 (French). MR**0460541** - Hongming Ding and Kenneth I. Gross,
*Operator-valued Bessel functions on Jordan algebras*, J. Reine Angew. Math.**435**(1993), 157–196. MR**1203914**, DOI 10.1515/crll.1993.435.157
[Ha]Ha G. Hardy, Summation of a series of polynomials of Laguerre, - Tadasi Nakayama,
*On Frobeniusean algebras. I*, Ann. of Math. (2)**40**(1939), 611–633. MR**16**, DOI 10.2307/1968946 - Sergio Sispanov,
*Generalización del teorema de Laguerre*, Bol. Mat.**12**(1939), 113–117 (Spanish). MR**3** - Bertram Kostant,
*On Whittaker vectors and representation theory*, Invent. Math.**48**(1978), no. 2, 101–184. MR**507800**, DOI 10.1007/BF01390249 - Edward Nelson,
*Analytic vectors*, Ann. of Math. (2)**70**(1959), 572–615. MR**107176**, DOI 10.2307/1970331 - L. Pukánszky,
*The Plancherel formula for the universal covering group of $\textrm {SL}(R,\,2)$*, Math. Ann.**156**(1964), 96–143. MR**170981**, DOI 10.1007/BF01359927 - M. Vergne and H. Rossi,
*Analytic continuation of the holomorphic discrete series of a semi-simple Lie group*, Acta Math.**136**(1976), no. 1-2, 1–59. MR**480883**, DOI 10.1007/BF02392042 - Charles Hopkins,
*Rings with minimal condition for left ideals*, Ann. of Math. (2)**40**(1939), 712–730. MR**12**, DOI 10.2307/1968951 - C. J. Everett Jr.,
*Annihilator ideals and representation iteration for abstract rings*, Duke Math. J.**5**(1939), 623–627. MR**13**, DOI 10.1215/S0012-7094-51-01817-0 - T. Venkatarayudu,
*The $7$-$15$ problem*, Proc. Indian Acad. Sci., Sect. A.**9**(1939), 531. MR**0000001**, DOI 10.1090/gsm/058 - Michael E. Taylor,
*Noncommutative harmonic analysis*, Mathematical Surveys and Monographs, vol. 22, American Mathematical Society, Providence, RI, 1986. MR**852988**, DOI 10.1090/surv/022 - Garth Warner,
*Harmonic analysis on semi-simple Lie groups. I*, Die Grundlehren der mathematischen Wissenschaften, Band 188, Springer-Verlag, New York-Heidelberg, 1972. MR**0498999**, DOI 10.1007/978-3-642-50275-0 - Nolan R. Wallach,
*The analytic continuation of the discrete series. I, II*, Trans. Amer. Math. Soc.**251**(1979), 1–17, 19–37. MR**531967**, DOI 10.1090/S0002-9947-1979-0531967-2 - I. M. Sheffer,
*Some properties of polynomial sets of type zero*, Duke Math. J.**5**(1939), 590–622. MR**81**, DOI 10.1215/S0012-7094-39-00549-1
[Wt]Wt G. Watson,

*Journ. London Math. Soc.*,

**7**(1932), 138-139, 192.

*Theory of Bessel Functions*, Cambridge Univ. Press, 1966. [Yo]Yo K. Yosida,

*Functional Analysis*, Grundlehren,

**123**, Springer-Verlag, 1971.

## Additional Information

**Bertram Kostant**- Affiliation: Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
- Email: kostant@math.mit.edu
- Received by editor(s): December 2, 1999
- Received by editor(s) in revised form: January 21, 2000
- Published electronically: April 26, 2000
- Additional Notes: Research supported in part by NSF grant DMS-9625941 and in part by the KG&G Foundation
- © Copyright 2000 American Mathematical Society
- Journal: Represent. Theory
**4**(2000), 181-224 - MSC (2000): Primary 22D10, 22E70, 33Cxx, 33C10, 33C45, 42C05, 43-xx, 43A65
- DOI: https://doi.org/10.1090/S1088-4165-00-00096-0
- MathSciNet review: 1755901