Remote Access Representation Theory
Green Open Access

Representation Theory

ISSN 1088-4165

 
 

 

On Minuscule Representations and the Principal SL$_2$


Author: Benedict H. Gross
Journal: Represent. Theory 4 (2000), 225-244
MSC (2000): Primary 20G05
DOI: https://doi.org/10.1090/S1088-4165-00-00106-0
Published electronically: July 27, 2000
MathSciNet review: 1795753
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We study the restriction of minuscule representations to the principal $SL_2$, and use this theory to identify an interesting test case for the Langlands philosophy of liftings.


References [Enhancements On Off] (What's this?)

  • James Arthur, Unipotent automorphic representations: conjectures, Astérisque 171-172 (1989), 13–71. Orbites unipotentes et représentations, II. MR 1021499
  • [B]B N. Bourbaki, Groupes et algèbres de Lie. Hermann, Paris, 1982.
  • Pierre Deligne, Variétés de Shimura: interprétation modulaire, et techniques de construction de modèles canoniques, Automorphic forms, representations and $L$-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977) Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I., 1979, pp. 247–289 (French). MR 546620
  • [dS]dS J. de Siebenthal, Sur certains sous-groupes de rang un des groupes de Lie clos. Comptes Rendus 230 (1950), 910–912.
  • Jiri Dadok and Victor Kac, Polar representations, J. Algebra 92 (1985), no. 2, 504–524. MR 778464, DOI https://doi.org/10.1016/0021-8693%2885%2990136-X
  • Roe Goodman and Nolan R. Wallach, Representations and invariants of the classical groups, Encyclopedia of Mathematics and its Applications, vol. 68, Cambridge University Press, Cambridge, 1998. MR 1606831
  • Benedict H. Gross, On the motive of $G$ and the principal homomorphism ${\rm SL}_2\to \widehat G$, Asian J. Math. 1 (1997), no. 1, 208–213. MR 1480995, DOI https://doi.org/10.4310/AJM.1997.v1.n1.a8
  • [G-S]G-S Benedict Gross and Gordan Savin, Motives with Galois group of type $G_2$: An exceptional theta correspondence, Compositio Math. 114 (1998), 153–217.
  • James E. Humphreys, Reflection groups and Coxeter groups, Cambridge Studies in Advanced Mathematics, vol. 29, Cambridge University Press, Cambridge, 1990. MR 1066460
  • V. G. Kac, Some remarks on nilpotent orbits, J. Algebra 64 (1980), no. 1, 190–213. MR 575790, DOI https://doi.org/10.1016/0021-8693%2880%2990141-6
  • M. Sato and T. Kimura, A classification of irreducible prehomogeneous vector spaces and their relative invariants, Nagoya Math. J. 65 (1977), 1–155. MR 430336
  • David A. Vogan Jr. and Gregg J. Zuckerman, Unitary representations with nonzero cohomology, Compositio Math. 53 (1984), no. 1, 51–90. MR 762307

Similar Articles

Retrieve articles in Representation Theory of the American Mathematical Society with MSC (2000): 20G05

Retrieve articles in all journals with MSC (2000): 20G05


Additional Information

Benedict H. Gross
Affiliation: Science Center 325, Harvard University, One Oxford Street, Cambridge, MA 02138
MR Author ID: 77400
Email: gross@math.harvard.edu

Received by editor(s): May 9, 2000
Received by editor(s) in revised form: June 13, 2000
Published electronically: July 27, 2000
Article copyright: © Copyright 2000 American Mathematical Society