On the equivariant $K$-theory of the nilpotent cone
HTML articles powered by AMS MathViewer
- by Viktor Ostrik
- Represent. Theory 4 (2000), 296-305
- DOI: https://doi.org/10.1090/S1088-4165-00-00089-3
- Published electronically: July 31, 2000
- PDF | Request permission
Abstract:
In this note we construct a “Kazhdan-Lusztig type” basis in equivariant $K$-theory of the nilpotent cone of a simple algebraic group $G$. This basis conjecturally is very close to the basis of this $K$-group consisting of irreducible bundles on nilpotent orbits. As a consequence we get a natural (conjectural) construction of Lusztig’s bijection between dominant weights and pairs {nilpotent orbit $\mathcal O$, irreducible $G$-bundle on $\mathcal O$}.References
- Henning Haahr Andersen, Tensor products of quantized tilting modules, Comm. Math. Phys. 149 (1992), no. 1, 149–159. MR 1182414, DOI 10.1007/BF02096627
- Henning Haahr Andersen and Jens Carsten Jantzen, Cohomology of induced representations for algebraic groups, Math. Ann. 269 (1984), no. 4, 487–525. MR 766011, DOI 10.1007/BF01450762
- H. H. Andersen, J. C. Jantzen, and W. Soergel, Representations of quantum groups at a $p$th root of unity and of semisimple groups in characteristic $p$: independence of $p$, Astérisque 220 (1994), 321 (English, with English and French summaries). MR 1272539
- Bram Broer, Line bundles on the cotangent bundle of the flag variety, Invent. Math. 113 (1993), no. 1, 1–20. MR 1223221, DOI 10.1007/BF01244299
- Bram Broer, Normality of some nilpotent varieties and cohomology of line bundles on the cotangent bundle of the flag variety, Lie theory and geometry, Progr. Math., vol. 123, Birkhäuser Boston, Boston, MA, 1994, pp. 1–19. MR 1327529, DOI 10.1007/978-1-4612-0261-5_{1}
- Abraham Broer, Decomposition varieties in semisimple Lie algebras, Canad. J. Math. 50 (1998), no. 5, 929–971. MR 1650954, DOI 10.4153/CJM-1998-048-6
- Neil Chriss and Victor Ginzburg, Representation theory and complex geometry, Birkhäuser Boston, Inc., Boston, MA, 1997. MR 1433132 Gi V. Ginzburg, Perverse sheaves on a loop group and Langlands’ duality, preprint alg-geom/9511007.
- Victor Ginzburg and Shrawan Kumar, Cohomology of quantum groups at roots of unity, Duke Math. J. 69 (1993), no. 1, 179–198. MR 1201697, DOI 10.1215/S0012-7094-93-06909-8
- William A. Graham, Functions on the universal cover of the principal nilpotent orbit, Invent. Math. 108 (1992), no. 1, 15–27. MR 1156383, DOI 10.1007/BF02100596
- V. Hinich, On the singularities of nilpotent orbits, Israel J. Math. 73 (1991), no. 3, 297–308. MR 1135219, DOI 10.1007/BF02773843
- J. E. Humphreys, Comparing modular representations of semisimple groups and their Lie algebras, Modular interfaces (Riverside, CA, 1995) AMS/IP Stud. Adv. Math., vol. 4, Amer. Math. Soc., Providence, RI, 1997, pp. 69–80. MR 1483904, DOI 10.1090/amsip/004/05
- George Lusztig, Nonlocal finiteness of a $W$-graph, Represent. Theory 1 (1997), approx. 6. MR 1429372, DOI 10.1090/S1088-4165-97-00003-4
- Radu Bǎdescu, On a problem of Goursat, Gaz. Mat. 44 (1939), 571–577. MR 0000087
- G. Lusztig, Bases in equivariant $K$-theory, Represent. Theory 2 (1998), 298–369. MR 1637973, DOI 10.1090/S1088-4165-98-00054-5
- William M. McGovern, Rings of regular functions on nilpotent orbits and their covers, Invent. Math. 97 (1989), no. 1, 209–217. MR 999319, DOI 10.1007/BF01850661
- William M. McGovern, A branching law for $\textrm {Spin}(7,\textbf {C})\to G_2$ and its applications to unipotent representations, J. Algebra 130 (1990), no. 1, 166–175. MR 1045742, DOI 10.1016/0021-8693(90)90106-X O V. Ostrik, Cohomology of subregular tilting modules for small quantum groups, preprint q-alg/9902094.
- D. I. Panyushev, Rationality of singularities and the Gorenstein property of nilpotent orbits, Funktsional. Anal. i Prilozhen. 25 (1991), no. 3, 76–78 (Russian); English transl., Funct. Anal. Appl. 25 (1991), no. 3, 225–226 (1992). MR 1139878, DOI 10.1007/BF01085494
- Wolfgang Soergel, Kazhdan-Lusztig-Polynome und eine Kombinatorik für Kipp-Moduln, Represent. Theory 1 (1997), 37–68 (German, with English summary). MR 1445511, DOI 10.1090/S1088-4165-97-00006-X
Bibliographic Information
- Viktor Ostrik
- Affiliation: Independent Moscow University, 11 Bolshoj Vlasjevskij per., Moscow 121002 Russia
- MR Author ID: 601011
- Email: ostrik@mccme.ru
- Received by editor(s): November 16, 1999
- Received by editor(s) in revised form: April 19, 2000
- Published electronically: July 31, 2000
- © Copyright 2000 American Mathematical Society
- Journal: Represent. Theory 4 (2000), 296-305
- MSC (2000): Primary 20G05; Secondary 14L30
- DOI: https://doi.org/10.1090/S1088-4165-00-00089-3
- MathSciNet review: 1773863