On the generic degrees of cyclotomic algebras
HTML articles powered by AMS MathViewer
- by Gunter Malle
- Represent. Theory 4 (2000), 342-369
- DOI: https://doi.org/10.1090/S1088-4165-00-00088-1
- Published electronically: August 1, 2000
- PDF | Request permission
Abstract:
We determine the generic degrees of cyclotomic Hecke algebras attached to exceptional finite complex reflection groups. The results are used to introduce the notion of spetsial reflection group, which in a certain sense is a generalization of the finite Weyl group. In particular, to spetsial $W$ there is attached a set of unipotent degrees which in the case of a Weyl group is just the set of degrees of unipotent characters of finite reductive groups with Weyl group $W$, and in general enjoys many of their combinatorial properties.References
- Rudolph E. Langer, The boundary problem of an ordinary linear differential system in the complex domain, Trans. Amer. Math. Soc. 46 (1939), 151–190 and Correction, 467 (1939). MR 84, DOI 10.1090/S0002-9947-1939-0000084-7
- Stefan Kempisty, Sur les fonctions à variation bornée au sens de Tonelli, Bull. Sém. Math. Univ. Wilno 2 (1939), 13–21 (French). MR 46
- Michel Broué and Gunter Malle, Zyklotomische Heckealgebren, Astérisque 212 (1993), 119–189 (German). Représentations unipotentes génériques et blocs des groupes réductifs finis. MR 1235834 BMM M. Broué, G. Malle and J. Michel, Towards spetses II, in preparation.
- Michel Broué, Gunter Malle, and Raphaël Rouquier, Complex reflection groups, braid groups, Hecke algebras, J. Reine Angew. Math. 500 (1998), 127–190. MR 1637497, DOI 10.1515/crll.1998.064
- Michel Broué and Jean Michel, Sur certains éléments réguliers des groupes de Weyl et les variétés de Deligne-Lusztig associées, Finite reductive groups (Luminy, 1994) Progr. Math., vol. 141, Birkhäuser Boston, Boston, MA, 1997, pp. 73–139 (French). MR 1429870, DOI 10.1007/978-1-4612-4124-9_{4} GIM M. Geck, L. Iancu and G. Malle, Weights of Markov traces and generic degrees, Indag. Mathem. (2000) (to appear). GP M. Geck and G. Pfeiffer, Characters of finite Coxeter groups and Iwahori-Hecke algebras, Oxford University Press, Oxford, 2000.
- I. M. Sheffer, Some properties of polynomial sets of type zero, Duke Math. J. 5 (1939), 590–622. MR 81, DOI 10.1215/S0012-7094-39-00549-1
- George Lusztig, Characters of reductive groups over a finite field, Annals of Mathematics Studies, vol. 107, Princeton University Press, Princeton, NJ, 1984. MR 742472, DOI 10.1515/9781400881772
- George Lusztig, Appendix: Coxeter groups and unipotent representations, Astérisque 212 (1993), 191–203. Représentations unipotentes génériques et blocs des groupes réductifs finis. MR 1235835
- J. C. Oxtoby and S. M. Ulam, On the existence of a measure invariant under a transformation, Ann. of Math. (2) 40 (1939), 560–566. MR 97, DOI 10.2307/1968940
- Gunter Malle, Degrés relatifs des algèbres cyclotomiques associées aux groupes de réflexions complexes de dimension deux, Finite reductive groups (Luminy, 1994) Progr. Math., vol. 141, Birkhäuser Boston, Boston, MA, 1997, pp. 311–332 (French). MR 1429878, DOI 10.1007/978-1-4612-4124-9_{1}2
- Gunter Malle, Spetses, Proceedings of the International Congress of Mathematicians, Vol. II (Berlin, 1998), 1998, pp. 87–96. MR 1648059 MaR —, On the rationality and fake degrees of characters of cyclotomic algebras, J. Math. Sci. Univ. Tokyo 6 (1999), 647–677.
- Giovanni Cutolo, John C. Lennox, Silvana Rinauro, Howard Smith, and James Wiegold, On infinite core-finite groups, Proc. Roy. Irish Acad. Sect. A 96 (1996), no. 2, 169–175. MR 1641198, DOI 10.1515/crll.1982.336.201
Bibliographic Information
- Gunter Malle
- Affiliation: FB Mathematik/Informatik, Universität Kassel, Heinrich-Plett-Str. 40, D–34132 Kassel, Germany
- MR Author ID: 225462
- Email: malle@mathematik.uni-kassel.de
- Received by editor(s): October 28, 1999
- Received by editor(s) in revised form: June 19, 2000
- Published electronically: August 1, 2000
- Additional Notes: I’m grateful to J. Michel for spotting some inaccuracies in an earlier version of this paper.
I thank the Science University of Tokyo for its hospitality and the Deutsche Forschungsgemeinschaft for financial support - © Copyright 2000 American Mathematical Society
- Journal: Represent. Theory 4 (2000), 342-369
- MSC (2000): Primary 20C08, 20C40
- DOI: https://doi.org/10.1090/S1088-4165-00-00088-1
- MathSciNet review: 1773866