On the representation theory of Iwahori-Hecke algebras of extended finite Weyl groups
HTML articles powered by AMS MathViewer
- by Meinolf Geck
- Represent. Theory 4 (2000), 370-397
- DOI: https://doi.org/10.1090/S1088-4165-00-00093-5
- Published electronically: September 11, 2000
- PDF | Request permission
Abstract:
We apply Lusztig’s theory of cells and asymptotic algebras to the Iwahori–Hecke algebra of a finite Weyl group extended by a group of graph automorphisms. This yields general results about splitting fields (extending earlier results by Digne–Michel) and decomposition matrices (generalizing earlier results by the author). Our main application is to establish an explicit formula for the number of simple modules in type $D_n$ (except in characteristic $2$), using the known results about type $B_n$ due to Dipper, James, and Murphy and Ariki and Mathas.References
- Susumu Ariki, On the decomposition numbers of the Hecke algebra of $G(m,1,n)$, J. Math. Kyoto Univ. 36 (1996), no. 4, 789–808. MR 1443748, DOI 10.1215/kjm/1250518452 AM S. Ariki and A. Mathas, The number of simple modules of the Hecke algebras of type $G(r,1,n)$, Math. Z. 233 (2000), 601–623.
- Roger W. Carter, Finite groups of Lie type, Wiley Classics Library, John Wiley & Sons, Ltd., Chichester, 1993. Conjugacy classes and complex characters; Reprint of the 1985 original; A Wiley-Interscience Publication. MR 1266626
- Franz Rádl, Über die Teilbarkeitsbedingungen bei den gewöhnlichen Differential polynomen, Math. Z. 45 (1939), 429–446 (German). MR 82, DOI 10.1007/BF01580293
- François Digne and Jean Michel, Fonctions $L$ des variétés de Deligne-Lusztig et descente de Shintani, Mém. Soc. Math. France (N.S.) 20 (1985), iv+144 (French, with English summary). MR 840835
- Richard Dipper and Gordon James, Representations of Hecke algebras of general linear groups, Proc. London Math. Soc. (3) 52 (1986), no. 1, 20–52. MR 812444, DOI 10.1112/plms/s3-52.1.20
- Richard Dipper and Gordon James, Representations of Hecke algebras of type $B_n$, J. Algebra 146 (1992), no. 2, 454–481. MR 1152915, DOI 10.1016/0021-8693(92)90078-Z
- Richard Dipper, Gordon James, and Eugene Murphy, Hecke algebras of type $B_n$ at roots of unity, Proc. London Math. Soc. (3) 70 (1995), no. 3, 505–528. MR 1317512, DOI 10.1112/plms/s3-70.3.505
- Walter Feit, The representation theory of finite groups, North-Holland Mathematical Library, vol. 25, North-Holland Publishing Co., Amsterdam-New York, 1982. MR 661045
- Omar Foda, Bernard Leclerc, Masato Okado, Jean-Yves Thibon, and Trevor A. Welsh, Branching functions of $A^{(1)}_{n-1}$ and Jantzen-Seitz problem for Ariki-Koike algebras, Adv. Math. 141 (1999), no. 2, 322–365. MR 1671762, DOI 10.1006/aima.1998.1783
- Meinolf Geck and Klaus Lux, The decomposition numbers of the Hecke algebra of type $F_4$, Manuscripta Math. 70 (1991), no. 3, 285–306. MR 1089065, DOI 10.1007/BF02568379
- Meinolf Geck, The decomposition numbers of the Hecke algebra of type $E^\ast _6$, Math. Comp. 61 (1993), no. 204, 889–899. MR 1195429, DOI 10.1090/S0025-5718-1993-1195429-5
- Meinolf Geck, Representations of Hecke algebras at roots of unity, Astérisque 252 (1998), Exp. No. 836, 3, 33–55 (English, with French summary). Séminaire Bourbaki. Vol. 1997/98. MR 1685620
- Meinolf Geck, Kazhdan-Lusztig cells and decomposition numbers, Represent. Theory 2 (1998), 264–277. MR 1628035, DOI 10.1090/S1088-4165-98-00042-9
- Meinolf Geck, Gerhard Hiss, and Gunter Malle, Towards a classification of the irreducible representations in non-describing characteristic of a finite group of Lie type, Math. Z. 221 (1996), no. 3, 353–386. MR 1381586, DOI 10.1007/PL00004253 ourbuch M. Geck and G. Pfeiffer, Characters of finite Coxeter groups and Iwahori–Hecke algebras, London Math. Soc. Monographs, New Series 21, Oxford University Press, 2000. ngkp M. Geck, S, Kim and G. Pfeiffer, Minimal length elements in twisted conjugacy classes of finite Coxeter groups, J. Algebra 229 (2000), 570–600. gero2 M. Geck and R. Rouquier, Filtrations on projective modules for Iwahori–Hecke algebras, preprint (1998).
- B. Huppert, Endliche Gruppen. I, Die Grundlehren der mathematischen Wissenschaften, Band 134, Springer-Verlag, Berlin-New York, 1967 (German). MR 0224703, DOI 10.1007/978-3-642-64981-3 Isaacs I. M. Isaacs, Character theory of finite groups, corrected reprint, Dover Publications, New York, 1967.
- Michio Jimbo, Kailash C. Misra, Tetsuji Miwa, and Masato Okado, Combinatorics of representations of $U_q(\widehat {{\mathfrak {s}}{\mathfrak {l}}}(n))$ at $q=0$, Comm. Math. Phys. 136 (1991), no. 3, 543–566. MR 1099695, DOI 10.1007/BF02099073
- David Kazhdan and George Lusztig, Representations of Coxeter groups and Hecke algebras, Invent. Math. 53 (1979), no. 2, 165–184. MR 560412, DOI 10.1007/BF01390031
- George Lusztig, Characters of reductive groups over a finite field, Annals of Mathematics Studies, vol. 107, Princeton University Press, Princeton, NJ, 1984. MR 742472, DOI 10.1515/9781400881772
- George Lusztig, Cells in affine Weyl groups, Algebraic groups and related topics (Kyoto/Nagoya, 1983) Adv. Stud. Pure Math., vol. 6, North-Holland, Amsterdam, 1985, pp. 255–287. MR 803338, DOI 10.2969/aspm/00610255
- George Lusztig, Cells in affine Weyl groups. II, J. Algebra 109 (1987), no. 2, 536–548. MR 902967, DOI 10.1016/0021-8693(87)90154-2
- George Lusztig, Cells in affine Weyl groups. II, J. Algebra 109 (1987), no. 2, 536–548. MR 902967, DOI 10.1016/0021-8693(87)90154-2
- G. Lusztig, Leading coefficients of character values of Hecke algebras, The Arcata Conference on Representations of Finite Groups (Arcata, Calif., 1986) Proc. Sympos. Pure Math., vol. 47, Amer. Math. Soc., Providence, RI, 1987, pp. 235–262. MR 933415, DOI 10.1090/pspum/047.2/933415
- Gunter Malle, Darstellungstheoretische Methoden bei der Realisierung einfacher Gruppen vom Lie Typ als Galoisgruppen, Representation theory of finite groups and finite-dimensional algebras (Bielefeld, 1991) Progr. Math., vol. 95, Birkhäuser, Basel, 1991, pp. 443–459 (German). MR 1112174, DOI 10.1007/978-3-0348-8658-1_{2}0 MM G. Malle and B. H. Matzat, Inverse Galois theory, Springer Monographs in Mathematics, Springer–Verlag, Berlin, 1999.
- Andrew Mathas, Simple modules of Ariki-Koike algebras, Group representations: cohomology, group actions and topology (Seattle, WA, 1996) Proc. Sympos. Pure Math., vol. 63, Amer. Math. Soc., Providence, RI, 1998, pp. 383–396. MR 1603195, DOI 10.1090/pspum/063/1603195
- Hideyuki Matsumura, Commutative ring theory, Cambridge Studies in Advanced Mathematics, vol. 8, Cambridge University Press, Cambridge, 1986. Translated from the Japanese by M. Reid. MR 879273
- Christakis Pallikaros, Representations of Hecke algebras of type $D_n$, J. Algebra 169 (1994), no. 1, 20–48. MR 1296580, DOI 10.1006/jabr.1994.1270
- C. A. Pallikaros, Some decomposition numbers of Hecke algebras, J. Algebra 187 (1997), no. 2, 493–509. MR 1430995, DOI 10.1006/jabr.1996.6793
- I. M. Sheffer, Some properties of polynomial sets of type zero, Duke Math. J. 5 (1939), 590–622. MR 81, DOI 10.1215/S0012-7094-39-00549-1
Bibliographic Information
- Meinolf Geck
- Affiliation: Institut Girard Desargues, bat. 101, Université Lyon 1, 43 bd du 11 novembre 1918, F–69622 Villeurbanne cedex, France
- MR Author ID: 272405
- Email: geck@desargues.univ-lyon1.fr
- Received by editor(s): January 19, 2000
- Received by editor(s) in revised form: August 7, 2000
- Published electronically: September 11, 2000
- © Copyright 2000 American Mathematical Society
- Journal: Represent. Theory 4 (2000), 370-397
- MSC (2000): Primary 20C08; Secondary 20C20
- DOI: https://doi.org/10.1090/S1088-4165-00-00093-5
- MathSciNet review: 1780716