An analytic Riemann-Hilbert correspondence for semi-simple Lie groups
HTML articles powered by AMS MathViewer
- by Laura Smithies and Joseph L. Taylor PDF
- Represent. Theory 4 (2000), 398-445 Request permission
Abstract:
Geometric Representation Theory for semi-simple Lie groups has two main sheaf theoretic models. Namely, through Beilinson-Bernstein localization theory, Harish-Chandra modules are related to holonomic sheaves of $\mathcal D$ modules on the flag variety. Then the (algebraic) Riemann-Hilbert correspondence relates these sheaves to constructible sheaves of complex vector spaces. On the other hand, there is a parallel localization theory for globalized Harish-Chandra modules—i.e., modules over the full semi-simple group which are completions of Harish-Chandra modules. In particular, Hecht-Taylor and Smithies have developed a localization theory relating minimal globalizations of Harish-Chandra modules to group equivariant sheaves of $\mathcal D$ modules on the flag variety. The main purpose of this paper is to develop an analytic Riemann-Hilbert correspondence relating these sheaves to constructible sheaves of complex vector spaces and to discuss the relationship between this “analytic" study of global modules and the preceding “algebraic" study of the underlying Harish-Chandra modules.References
- Alexandre Beĭlinson and Joseph Bernstein, Localisation de $g$-modules, C. R. Acad. Sci. Paris Sér. I Math. 292 (1981), no. 1, 15–18 (French, with English summary). MR 610137
- A. Beĭlinson and J. Bernstein, A proof of Jantzen conjectures, I. M. Gel′fand Seminar, Adv. Soviet Math., vol. 16, Amer. Math. Soc., Providence, RI, 1993, pp. 1–50. MR 1237825, DOI 10.1090/advsov/016.1/01
- Walter Borho and Jean-Luc Brylinski, Differential operators on homogeneous spaces. II. Relative enveloping algebras, Bull. Soc. Math. France 117 (1989), no. 2, 167–210 (English, with French summary). MR 1015807, DOI 10.24033/bsmf.2117
- Joseph Bernstein and Valery Lunts, Equivariant sheaves and functors, Lecture Notes in Mathematics, vol. 1578, Springer-Verlag, Berlin, 1994. MR 1299527, DOI 10.1007/BFb0073549
- Joseph Bernstein and Valery Lunts, Localization for derived categories of $({\mathfrak {g}},K)$-modules, J. Amer. Math. Soc. 8 (1995), no. 4, 819–856. MR 1317229, DOI 10.1090/S0894-0347-1995-1317229-7
- L. Kantorovitch, The method of successive approximations for functional equations, Acta Math. 71 (1939), 63–97. MR 95, DOI 10.1007/BF02547750
- A. Borel, P.-P. Grivel, B. Kaup, A. Haefliger, B. Malgrange, and F. Ehlers, Algebraic $D$-modules, Perspectives in Mathematics, vol. 2, Academic Press, Inc., Boston, MA, 1987. MR 882000
- Kurt Reidemeister, Die Arithmetik der Griechen, Hamburger Math. Einzelschr. 1939 (1940), no. 26, 32 (German). MR 788, DOI 10.1007/978-0-8176-4765-0
- Albert Boggess, CR manifolds and the tangential Cauchy-Riemann complex, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1991. MR 1211412
- Jörg Eschmeier and Mihai Putinar, Spectral decompositions and analytic sheaves, London Mathematical Society Monographs. New Series, vol. 10, The Clarendon Press, Oxford University Press, New York, 1996. Oxford Science Publications. MR 1420618
- H. Grauert, Th. Peternell, and R. Remmert (eds.), Several complex variables. VII, Encyclopaedia of Mathematical Sciences, vol. 74, Springer-Verlag, Berlin, 1994. Sheaf-theoretical methods in complex analysis; A reprint of Current problems in mathematics. Fundamental directions. Vol. 74 (Russian), Vseross. Inst. Nauchn. i Tekhn. Inform. (VINITI), Moscow. MR 1326617, DOI 10.1007/978-3-662-09873-8
- Robert C. Gunning and Hugo Rossi, Analytic functions of several complex variables, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1965. MR 0180696
- Henryk Hecht and Joseph L. Taylor, Analytic localization of group representations, Adv. Math. 79 (1990), no. 2, 139–212. MR 1033077, DOI 10.1016/0001-8708(90)90062-R
- Masaki Kashiwara, Character, character cycle, fixed point theorem and group representations, Representations of Lie groups, Kyoto, Hiroshima, 1986, Adv. Stud. Pure Math., vol. 14, Academic Press, Boston, MA, 1988, pp. 369–378. MR 1039844, DOI 10.2969/aspm/01410369
- Masaki Kashiwara, Representation theory and $D$-modules on flag varieties, Astérisque 173-174 (1989), 9, 55–109. Orbites unipotentes et représentations, III. MR 1021510
- Masaki Kashiwara and Pierre Schapira, Sheaves on manifolds, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 292, Springer-Verlag, Berlin, 1994. With a chapter in French by Christian Houzel; Corrected reprint of the 1990 original. MR 1299726, DOI 10.1007/978-3-662-02661-8
- Masaki Kashiwara and Wilfried Schmid, Quasi-equivariant ${\scr D}$-modules, equivariant derived category, and representations of reductive Lie groups, Lie theory and geometry, Progr. Math., vol. 123, Birkhäuser Boston, Boston, MA, 1994, pp. 457–488. MR 1327544, DOI 10.1007/978-1-4612-0261-5_{1}6
- Z. Mebkhout, Une autre équivalence de catégories, Compositio Math. 51 (1984), no. 1, 63–88 (French). MR 734785
- Z. Mebkhout, Le formalisme des six opérations de Grothendieck pour les $\scr D_X$-modules cohérents, Travaux en Cours [Works in Progress], vol. 35, Hermann, Paris, 1989 (French). With supplementary material by the author and L. Narváez Macarro. MR 1008245
- I. Mirković, T. Uzawa, and K. Vilonen, Matsuki correspondence for sheaves, Invent. Math. 109 (1992), no. 2, 231–245. MR 1172690, DOI 10.1007/BF01232026
- Wilfried Schmid, Homogeneous complex manifolds and representations of semisimple Lie groups, Representation theory and harmonic analysis on semisimple Lie groups, Math. Surveys Monogr., vol. 31, Amer. Math. Soc., Providence, RI, 1989, pp. 223–286. Dissertation, University of California, Berkeley, CA, 1967. MR 1011899, DOI 10.1090/surv/031/05
- Wilfried Schmid, Boundary value problems for group invariant differential equations, Astérisque Numéro Hors Série (1985), 311–321. The mathematical heritage of Élie Cartan (Lyon, 1984). MR 837206 [Sch]Sch H. Schaeffer, Topological Vector Spaces, Macmillan, New York (1966). [Sm]Sm L. Smithies, Equivariant analytic localization of group representations, Mem. Amer. Math. Soc. (to appear).
- J. Horn, Über eine hypergeometrische Funktion zweier Veränderlichen, Monatsh. Math. Phys. 47 (1939), 359–379 (German). MR 91, DOI 10.1007/BF01695508
- Joseph L. Taylor, Homology and cohomology for topological algebras, Advances in Math. 9 (1972), 137–182. MR 328624, DOI 10.1016/0001-8708(72)90016-3
- David A. Vogan Jr., Representations of real reductive Lie groups, Progress in Mathematics, vol. 15, Birkhäuser, Boston, Mass., 1981. MR 632407
Additional Information
- Laura Smithies
- Affiliation: Department of Mathematics and Computer Science, Kent State University, Kent, Ohio 44242
- Email: smithies@mcs.kent.edu
- Joseph L. Taylor
- Affiliation: Department of Mathematics, University of Utah, Salt Lake City, Utah 84112
- Email: taylor@math.utah.edu
- Received by editor(s): July 21, 1999
- Published electronically: September 12, 2000
- © Copyright 2000 American Mathematical Society
- Journal: Represent. Theory 4 (2000), 398-445
- MSC (2000): Primary 22E46; Secondary 18D99, 55N91
- DOI: https://doi.org/10.1090/S1088-4165-00-00076-5
- MathSciNet review: 1780717