$G(F_{q})$-invariants in irreducible $G(F_{q^{2}})$-modules
HTML articles powered by AMS MathViewer
- by G. Lusztig
- Represent. Theory 4 (2000), 446-465
- DOI: https://doi.org/10.1090/S1088-4165-00-00114-X
- Published electronically: September 14, 2000
- PDF | Request permission
Abstract:
We give an explicit formula for the dimension of the space of $G(F_{q})$-invariant vectors in an irreducible complex representation of $G(F_{q^{2}})$, where $G$ is a connected reductive algebraic group defined over a finite field $F_{q}$ with connected center.References
- P. Deligne and G. Lusztig, Representations of reductive groups over finite fields, Ann. of Math. (2) 103 (1976), no. 1, 103–161. MR 393266, DOI 10.2307/1971021 [FS]FS G. Frobenius and I. Schur, Über die reellen Darstellungen der endlichen Gruppen, Sitz. Pruss. Akad. Wiss. Berlin (1906), 186-208.
- Roderick Gow, Two multiplicity-free permutation representations of the general linear group $\textrm {GL}(n,q^2)$, Math. Z. 188 (1984), no. 1, 45–54. MR 767361, DOI 10.1007/BF01163871
- Noriaki Kawanaka, On subfield symmetric spaces over a finite field, Osaka J. Math. 28 (1991), no. 4, 759–791. MR 1152953
- George Lusztig, Characters of reductive groups over a finite field, Annals of Mathematics Studies, vol. 107, Princeton University Press, Princeton, NJ, 1984. MR 742472, DOI 10.1515/9781400881772
- Radu Bǎdescu, On a problem of Goursat, Gaz. Mat. 44 (1939), 571–577. MR 0000087, DOI 10.1016/0001-8708(86)90071-X
- George Lusztig, On the character values of finite Chevalley groups at unipotent elements, J. Algebra 104 (1986), no. 1, 146–194. MR 865898, DOI 10.1016/0021-8693(86)90245-0
- G. Lusztig, Leading coefficients of character values of Hecke algebras, The Arcata Conference on Representations of Finite Groups (Arcata, Calif., 1986) Proc. Sympos. Pure Math., vol. 47, Amer. Math. Soc., Providence, RI, 1987, pp. 235–262. MR 933415, DOI 10.1090/pspum/047.2/933415
- George Lusztig, Symmetric spaces over a finite field, The Grothendieck Festschrift, Vol. III, Progr. Math., vol. 88, Birkhäuser Boston, Boston, MA, 1990, pp. 57–81. MR 1106911, DOI 10.1007/978-0-8176-4576-2_{3}
- George Lusztig, Green functions and character sheaves, Ann. of Math. (2) 131 (1990), no. 2, 355–408. MR 1043271, DOI 10.2307/1971496
- P. Erdös, On the distribution of normal point groups, Proc. Nat. Acad. Sci. U.S.A. 26 (1940), 294–297. MR 2000, DOI 10.1073/pnas.26.4.294
- Toshiaki Shoji, Character sheaves and almost characters of reductive groups. I, II, Adv. Math. 111 (1995), no. 2, 244–313, 314–354. MR 1318530, DOI 10.1006/aima.1995.1024
Bibliographic Information
- G. Lusztig
- Affiliation: Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
- MR Author ID: 117100
- Email: gyuri@math.mit.edu
- Received by editor(s): February 26, 2000
- Received by editor(s) in revised form: June 26, 2000
- Published electronically: September 14, 2000
- Additional Notes: Supported in part by the National Science Foundation
- © Copyright 2000 American Mathematical Society
- Journal: Represent. Theory 4 (2000), 446-465
- MSC (2000): Primary 20C15
- DOI: https://doi.org/10.1090/S1088-4165-00-00114-X
- MathSciNet review: 1780718