Spherical functions on mixed symmetric spaces
HTML articles powered by AMS MathViewer
- by Bernhard Krötz, Karl-Hermann Neeb and Gestur Ólafsson PDF
- Represent. Theory 5 (2001), 43-92 Request permission
Abstract:
In this article we compute the spherical functions which are associated to hyperbolically ordered symmetric spaces $H\backslash G$. These spaces are usually not semisimple; one prominent example is given by $H\backslash G= ({\mathbb R}^n\rtimes {\mathrm {Gl}}(n,{\mathbb R}))\backslash (H_n\rtimes {\mathrm {Sp}} (n,{\mathbb R}))$ with $H_n$ the $(2n+1)$-dimensional Heisenberg group.References
-
[AÓS00]AOS00 N. B. Andersen, G. Ólafsson, and H. Schlichtkrull, On the inversion of the Laplace and Abel transforms for causal symmetric spaces, preprint, 2000.
- Gerald B. Folland, Harmonic analysis in phase space, Annals of Mathematics Studies, vol. 122, Princeton University Press, Princeton, NJ, 1989. MR 983366, DOI 10.1515/9781400882427
- J. Faraut, J. Hilgert, and G. Ólafsson, Spherical functions on ordered symmetric spaces, Ann. Inst. Fourier (Grenoble) 44 (1994), no. 3, 927–965 (English, with English and French summaries). MR 1303888, DOI 10.5802/aif.1421
- J. Fröhlich, K. Osterwalder, and E. Seiler, On virtual representations of symmetric spaces and their analytic continuation, Ann. of Math. (2) 118 (1983), no. 3, 461–489. MR 727701, DOI 10.2307/2006979
- Ramesh Gangolli and V. S. Varadarajan, Harmonic analysis of spherical functions on real reductive groups, Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], vol. 101, Springer-Verlag, Berlin, 1988. MR 954385, DOI 10.1007/978-3-642-72956-0
- Gerrit Heckman and Henrik Schlichtkrull, Harmonic analysis and special functions on symmetric spaces, Perspectives in Mathematics, vol. 16, Academic Press, Inc., San Diego, CA, 1994. MR 1313912
- Sigurdur Helgason, Differential geometry, Lie groups, and symmetric spaces, Pure and Applied Mathematics, vol. 80, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1978. MR 514561
- Sigurdur Helgason, Groups and geometric analysis, Pure and Applied Mathematics, vol. 113, Academic Press, Inc., Orlando, FL, 1984. Integral geometry, invariant differential operators, and spherical functions. MR 754767 [HiKr99a]HiKr99a J. Hilgert and B. Krötz, The Plancherel Theorem for invariant Hilbert spaces, Math. Z., to appear.
- Joachim Hilgert and Bernhard Krötz, Representations, characters, and spherical functions associated to causal symmetric spaces, J. Funct. Anal. 169 (1999), no. 2, 357–390. MR 1730564, DOI 10.1006/jfan.1999.3467
- Joachim Hilgert and Bernhard Krötz, Weighted Bergman spaces associated with causal symmetric spaces, Manuscripta Math. 99 (1999), no. 2, 151–180. MR 1697211, DOI 10.1007/s002290050167
- Joachim Hilgert and Karl-Hermann Neeb, Spherical functions on Ol′shanskiĭ spaces, J. Funct. Anal. 142 (1996), no. 2, 446–493. MR 1423041, DOI 10.1006/jfan.1996.0156
- Joachim Hilgert and Karl-Hermann Neeb, Positive definite spherical functions on Ol′shanskiĭ domains, Trans. Amer. Math. Soc. 352 (2000), no. 3, 1345–1380. MR 1473443, DOI 10.1090/S0002-9947-99-02184-4
- Joachim Hilgert and Gestur Ólafsson, Causal symmetric spaces, Perspectives in Mathematics, vol. 18, Academic Press, Inc., San Diego, CA, 1997. Geometry and harmonic analysis. MR 1407033, DOI 10.1016/B978-012525430-4/50004-8
- J. Hilgert, G. Ólafsson, and B. Ørsted, Hardy spaces on affine symmetric spaces, J. Reine Angew. Math. 415 (1991), 189–218. MR 1096906, DOI 10.1515/crll.1991.415.189
- Palle E. T. Jorgensen, Analytic continuation of local representations of symmetric spaces, J. Funct. Anal. 70 (1987), no. 2, 304–322. MR 874059, DOI 10.1016/0022-1236(87)90115-7
- Palle E. T. Jorgensen and Gestur Ólafsson, Unitary representations of Lie groups with reflection symmetry, J. Funct. Anal. 158 (1998), no. 1, 26–88. MR 1641554, DOI 10.1006/jfan.1998.3285 [JoÓl00]JoOl00 —, Unitary representations and Osterwalder–Schrader Duality. The Mathematical Legacy of Harish-Chandra. A Celebration of Representation Theory and Harmonic Analysis. PSPM, 98, 2000, 333–401.
- Anthony W. Knapp, Lie groups beyond an introduction, Progress in Mathematics, vol. 140, Birkhäuser Boston, Inc., Boston, MA, 1996. MR 1399083, DOI 10.1007/978-1-4757-2453-0
- Bernhard Krötz, On Hardy and Bergman spaces on complex Ol′shanskiĭ semigroups, Math. Ann. 312 (1998), no. 1, 13–52. MR 1645949, DOI 10.1007/s002080050211 [Kr99]Kr99 —, The Plancherel theorem for biinvariant Hilbert spaces, Publ. RIMS, Kyoto Univ., 35:1 (1999), 91–122, [Kr01]Kr01—, Formal dimension for semisimple symmetric spaces, Comp. Math. 125, 155–191 (2001).
- Bernhard Krötz and Karl-Hermann Neeb, On hyperbolic cones and mixed symmetric spaces, J. Lie Theory 6 (1996), no. 1, 69–146. MR 1406006
- Bernhard Krötz, Karl-Hermann Neeb, and Gestur Ólafsson, Spherical representations and mixed symmetric spaces, Represent. Theory 1 (1997), 424–461. MR 1483015, DOI 10.1090/S1088-4165-97-00035-6 [KrÓl99]KrOl99 B. Krötz and G. Ólafsson, The c-function for non-compactly causal symmetric spaces, submitted.
- Jimmie D. Lawson, Polar and Ol′shanskiĭ decompositions, J. Reine Angew. Math. 448 (1994), 191–219. MR 1266749, DOI 10.1515/crll.1994.448.191
- Ottmar Loos, Symmetric spaces. I: General theory, W. A. Benjamin, Inc., New York-Amsterdam, 1969. MR 0239005
- L. Kantorovitch, The method of successive approximations for functional equations, Acta Math. 71 (1939), 63–97. MR 95, DOI 10.1007/BF02547750
- Karl-Hermann Neeb, Coherent states, holomorphic extensions, and highest weight representations, Pacific J. Math. 174 (1996), no. 2, 497–542. MR 1405599, DOI 10.2140/pjm.1996.174.497
- Karl-Hermann Neeb, A general non-linear convexity theorem, Forum Math. 9 (1997), no. 5, 613–640. MR 1467142, DOI 10.1515/form.1997.9.613
- Karl-Hermann Neeb, Square integrable highest weight representations, Glasgow Math. J. 39 (1997), no. 3, 295–321. MR 1484573, DOI 10.1017/S0017089500032237
- Karl-Hermann Neeb, On the complex geometry of invariant domains in complexified symmetric spaces, Ann. Inst. Fourier (Grenoble) 49 (1999), no. 1, vi, x, 177–225 (English, with English and French summaries). MR 1688148, DOI 10.5802/aif.1671
- Karl-Hermann Neeb, Operator-valued positive definite kernels on tubes, Monatsh. Math. 126 (1998), no. 2, 125–160. MR 1639387, DOI 10.1007/BF01473583 [Ne99]Ne99—, “Holomorphy and Convexity in Lie Theory,” Expositions in Mathematics 28, de Gruyter, 2000. [No01]No01 T. Nomura, Invariant Berezin Transform. In: Ed M.A. Picardello: Harmonic analysis and integral geometry. Chapman & Hall/CRC Research Notes in Mathematics 422, 2001.
- Gestur Ólafsson, Fourier and Poisson transformation associated to a semisimple symmetric space, Invent. Math. 90 (1987), no. 3, 605–629. MR 914851, DOI 10.1007/BF01389180 [Ól97]Ol97—, Spherical Functions and Spherical Laplace Transform on Ordered Symmetric Space, http://www.math.lsu.edu/$^{\sim }$preprint.
- Gestur Ólafsson, Open problems in harmonic analysis on causal symmetric spaces, Positivity in Lie theory: open problems, De Gruyter Exp. Math., vol. 26, de Gruyter, Berlin, 1998, pp. 249–270. MR 1648706 [Ól00]Ol00—, Analytic continuation in Representation Theory and Harmonic Analysis. In: Global Analysis and Harmonic Analysis (J. P. Bourguignon, T. Branson, and O. Hijazi, eds.), Seminaires et Congres 4 (2000) 201–233. [ÓlPa00]OlPa00 G. Ólafsson and A. Pasquale, On the meromorphic extension of the spherical functions on noncompactly causal symmetric spaces. Preprint, 2000.
- G. Ólafsson and B. Ørsted, The holomorphic discrete series of an affine symmetric space and representations with reproducing kernels, Trans. Amer. Math. Soc. 326 (1991), no. 1, 385–405. MR 1002923, DOI 10.1090/S0002-9947-1991-1002923-0
- Robert Schrader, Reflection positivity for the complementary series of $\textrm {SL}(2n,\textbf {C})$, Publ. Res. Inst. Math. Sci. 22 (1986), no. 1, 119–141. MR 834352, DOI 10.2977/prims/1195178376
- Goro Shimura, Invariant differential operators on Hermitian symmetric spaces, Ann. of Math. (2) 132 (1990), no. 2, 237–272. MR 1070598, DOI 10.2307/1971523
- Nolan R. Wallach, Real reductive groups. I, Pure and Applied Mathematics, vol. 132, Academic Press, Inc., Boston, MA, 1988. MR 929683
- Garth Warner, Harmonic analysis on semi-simple Lie groups. I, Die Grundlehren der mathematischen Wissenschaften, Band 188, Springer-Verlag, New York-Heidelberg, 1972. MR 0498999, DOI 10.1007/978-3-642-51640-5
Additional Information
- Bernhard Krötz
- Affiliation: Department of Mathematics, The Ohio State University, 231 West 18th Avenue, Columbus, Ohio 43210–1174
- Email: kroetz@math.ohio-state.edu
- Karl-Hermann Neeb
- Affiliation: Fachbereich Mathematik, Technische Universität Darmstadt, Schlossgartenstrasse 7, D-64289 Darmstadt, Germany
- MR Author ID: 288679
- Email: neeb@mathematik.tu-darmstadt.de
- Gestur Ólafsson
- Affiliation: Department of Mathematics, Louisiana State University, Baton Rouge, Louisianna 70803
- MR Author ID: 133515
- Email: olafsson@math.lsu.edu
- Received by editor(s): March 29, 2000
- Received by editor(s) in revised form: September 26, 2000, and March 20, 2001
- Published electronically: April 23, 2001
- Additional Notes: The first author was supported by the DFG-project HI 412/5-2 and LSU
The second author was supported by NSF grant DMS-9626541, DMS 0070607, INT 972277, and LEQSF grant (1996-99)-RD-A-12 - © Copyright 2001 American Mathematical Society
- Journal: Represent. Theory 5 (2001), 43-92
- MSC (2000): Primary 22E30, 22E45, 43A85
- DOI: https://doi.org/10.1090/S1088-4165-01-00126-1
- MathSciNet review: 1826428