Weyl modules for classical and quantum affine algebras
HTML articles powered by AMS MathViewer
- by Vyjayanthi Chari and Andrew Pressley
- Represent. Theory 5 (2001), 191-223
- DOI: https://doi.org/10.1090/S1088-4165-01-00115-7
- Published electronically: July 5, 2001
- PDF | Request permission
Abstract:
We introduce and study the notion of a Weyl module for the classical affine algebras, these modules are universal finite-dimensional highest weight modules. We conjecture that the modules are the classical limit of a family of irreducible modules of the quantum affine algebra, and prove the conjecture in the case of $sl_2$. The conjecture implies also that the Weyl modules are the classical limits of the standard modules introduced by Nakajima and further studied by Varagnolo and Vasserot.References
- Tatsuya Akasaka and Masaki Kashiwara, Finite-dimensional representations of quantum affine algebras, Publ. Res. Inst. Math. Sci. 33 (1997), no. 5, 839–867. MR 1607008, DOI 10.2977/prims/1195145020
- Jonathan Beck, Braid group action and quantum affine algebras, Comm. Math. Phys. 165 (1994), no. 3, 555–568. MR 1301623, DOI 10.1007/BF02099423
- Jonathan Beck, Vyjayanthi Chari, and Andrew Pressley, An algebraic characterization of the affine canonical basis, Duke Math. J. 99 (1999), no. 3, 455–487. MR 1712630, DOI 10.1215/S0012-7094-99-09915-5
- Vyjayanthi Chari, Integrable representations of affine Lie-algebras, Invent. Math. 85 (1986), no. 2, 317–335. MR 846931, DOI 10.1007/BF01389093
- Vyjayanthi Chari and Andrew Pressley, New unitary representations of loop groups, Math. Ann. 275 (1986), no. 1, 87–104. MR 849057, DOI 10.1007/BF01458586
- Vyjayanthi Chari and Andrew Pressley, A new family of irreducible, integrable modules for affine Lie algebras, Math. Ann. 277 (1987), no. 3, 543–562. MR 891591, DOI 10.1007/BF01458331
- Vyjayanthi Chari and Andrew Pressley, Quantum affine algebras, Comm. Math. Phys. 142 (1991), no. 2, 261–283. MR 1137064, DOI 10.1007/BF02102063
- L. Kantorovitch, The method of successive approximations for functional equations, Acta Math. 71 (1939), 63–97. MR 95, DOI 10.1007/BF02547750
- Vyjayanthi Chari and Andrew Pressley, Quantum affine algebras and their representations, Representations of groups (Banff, AB, 1994) CMS Conf. Proc., vol. 16, Amer. Math. Soc., Providence, RI, 1995, pp. 59–78. MR 1357195, DOI 10.1007/BF00750760
- Vyjayanthi Chari and Andrew Pressley, Quantum affine algebras at roots of unity, Represent. Theory 1 (1997), 280–328. MR 1463925, DOI 10.1090/S1088-4165-97-00030-7 [CP7]CPhecke V. Chari and A. Pressley, Integrable and Weyl modules for quantum affine $sl_2$, preprint, math. qa/007123. [Dr1]Dr1 V.G. Drinfeld, Hopf Algebras and the quantum Yang–Baxter equation, Sov. Math. Dokl. 32 (1985) 254–258.
- V. G. Drinfel′d, A new realization of Yangians and of quantum affine algebras, Dokl. Akad. Nauk SSSR 296 (1987), no. 1, 13–17 (Russian); English transl., Soviet Math. Dokl. 36 (1988), no. 2, 212–216. MR 914215
- Howard Garland, The arithmetic theory of loop algebras, J. Algebra 53 (1978), no. 2, 480–551. MR 502647, DOI 10.1016/0021-8693(78)90294-6
- Victor Ginzburg and Éric Vasserot, Langlands reciprocity for affine quantum groups of type $A_n$, Internat. Math. Res. Notices 3 (1993), 67–85. MR 1208827, DOI 10.1155/S1073792893000078
- Naihuan Jing, On Drinfeld realization of quantum affine algebras, The Monster and Lie algebras (Columbus, OH, 1996) Ohio State Univ. Math. Res. Inst. Publ., vol. 7, de Gruyter, Berlin, 1998, pp. 195–206. MR 1650669, DOI 10.1515/9783110801897.195 [FM]FM E. Frenkel and E. Mukhin, Combinatorics of $q$–characters of finite-dimensional representations of quantum affine algebras, Comm. Math. Phys. 216 (2001), 23–57. [FR]FR E. Frenkel and N. Reshetikhin, The $q$–characters of representations of quantum affine algebras and deformations of $W$–algebras, Contemp. Math. 248 (1999).
- Masaki Kashiwara, Crystal bases of modified quantized enveloping algebra, Duke Math. J. 73 (1994), no. 2, 383–413. MR 1262212, DOI 10.1215/S0012-7094-94-07317-1 [K2]K2 M. Kashiwara, On level zero representations of quantized affine algebras, math.qa/0010293.
- D. Kazhdan and Y. Soibelman, Representations of quantum affine algebras, Selecta Math. (N.S.) 1 (1995), no. 3, 537–595. MR 1366624, DOI 10.1007/BF01589498
- G. Lusztig, Quantum deformations of certain simple modules over enveloping algebras, Adv. in Math. 70 (1988), no. 2, 237–249. MR 954661, DOI 10.1016/0001-8708(88)90056-4
- George Lusztig, Introduction to quantum groups, Progress in Mathematics, vol. 110, Birkhäuser Boston, Inc., Boston, MA, 1993. MR 1227098 [N]N H. Nakajima, $t$-analogue of the $q$-characters of finite-dimensional representations of quantum affine algebras, math.QA/0009231. [VV]VV M. Varagnolo and E. Vasserot, Standard modules for quantum affine algebras, math.qa/0006084.
Bibliographic Information
- Vyjayanthi Chari
- Affiliation: Department of Mathematics, University of California, Riverside, California 92521
- Email: chari@math.ucr.edu
- Andrew Pressley
- Affiliation: Department of Mathematics, Kings College, London, WC 2R, 2LS, England, United Kingdom
- Email: anp@mth.kcl.ac.uk
- Received by editor(s): August 23, 2000
- Published electronically: July 5, 2001
- © Copyright 2001 American Mathematical Society
- Journal: Represent. Theory 5 (2001), 191-223
- MSC (2000): Primary 81R50, 17B67
- DOI: https://doi.org/10.1090/S1088-4165-01-00115-7
- MathSciNet review: 1850556