Weyl modules for classical and quantum affine algebras
Authors:
Vyjayanthi Chari and Andrew Pressley
Journal:
Represent. Theory 5 (2001), 191-223
MSC (2000):
Primary 81R50, 17B67
DOI:
https://doi.org/10.1090/S1088-4165-01-00115-7
Published electronically:
July 5, 2001
MathSciNet review:
1850556
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: We introduce and study the notion of a Weyl module for the classical affine algebras, these modules are universal finite-dimensional highest weight modules. We conjecture that the modules are the classical limit of a family of irreducible modules of the quantum affine algebra, and prove the conjecture in the case of $sl_2$. The conjecture implies also that the Weyl modules are the classical limits of the standard modules introduced by Nakajima and further studied by Varagnolo and Vasserot.
- Tatsuya Akasaka and Masaki Kashiwara, Finite-dimensional representations of quantum affine algebras, Publ. Res. Inst. Math. Sci. 33 (1997), no. 5, 839–867. MR 1607008, DOI https://doi.org/10.2977/prims/1195145020
- Jonathan Beck, Braid group action and quantum affine algebras, Comm. Math. Phys. 165 (1994), no. 3, 555–568. MR 1301623
- Jonathan Beck, Vyjayanthi Chari, and Andrew Pressley, An algebraic characterization of the affine canonical basis, Duke Math. J. 99 (1999), no. 3, 455–487. MR 1712630, DOI https://doi.org/10.1215/S0012-7094-99-09915-5
- Vyjayanthi Chari, Integrable representations of affine Lie-algebras, Invent. Math. 85 (1986), no. 2, 317–335. MR 846931, DOI https://doi.org/10.1007/BF01389093
- Vyjayanthi Chari and Andrew Pressley, New unitary representations of loop groups, Math. Ann. 275 (1986), no. 1, 87–104. MR 849057, DOI https://doi.org/10.1007/BF01458586
- Vyjayanthi Chari and Andrew Pressley, A new family of irreducible, integrable modules for affine Lie algebras, Math. Ann. 277 (1987), no. 3, 543–562. MR 891591, DOI https://doi.org/10.1007/BF01458331
- Vyjayanthi Chari and Andrew Pressley, Quantum affine algebras, Comm. Math. Phys. 142 (1991), no. 2, 261–283. MR 1137064 [CP4]CP4 V. Chari and A. Pressley, A Guide to Quantum Groups, Cambridge University Press, Cambridge, 1994; corrected reprint of the 1994 original. ;
- Vyjayanthi Chari and Andrew Pressley, Quantum affine algebras and their representations, Representations of groups (Banff, AB, 1994) CMS Conf. Proc., vol. 16, Amer. Math. Soc., Providence, RI, 1995, pp. 59–78. MR 1357195, DOI https://doi.org/10.1007/bf00750760
- Vyjayanthi Chari and Andrew Pressley, Quantum affine algebras at roots of unity, Represent. Theory 1 (1997), 280–328. MR 1463925, DOI https://doi.org/10.1090/S1088-4165-97-00030-7 [CP7]CPhecke V. Chari and A. Pressley, Integrable and Weyl modules for quantum affine $sl_2$, preprint, math. qa/007123. [Dr1]Dr1 V.G. Drinfeld, Hopf Algebras and the quantum Yang–Baxter equation, Sov. Math. Dokl. 32 (1985) 254–258.
- V. G. Drinfel′d, A new realization of Yangians and of quantum affine algebras, Dokl. Akad. Nauk SSSR 296 (1987), no. 1, 13–17 (Russian); English transl., Soviet Math. Dokl. 36 (1988), no. 2, 212–216. MR 914215
- Howard Garland, The arithmetic theory of loop algebras, J. Algebra 53 (1978), no. 2, 480–551. MR 502647, DOI https://doi.org/10.1016/0021-8693%2878%2990294-6
- Victor Ginzburg and Éric Vasserot, Langlands reciprocity for affine quantum groups of type $A_n$, Internat. Math. Res. Notices 3 (1993), 67–85. MR 1208827, DOI https://doi.org/10.1155/S1073792893000078
- Naihuan Jing, On Drinfeld realization of quantum affine algebras, The Monster and Lie algebras (Columbus, OH, 1996) Ohio State Univ. Math. Res. Inst. Publ., vol. 7, de Gruyter, Berlin, 1998, pp. 195–206. MR 1650669 [FM]FM E. Frenkel and E. Mukhin, Combinatorics of $q$–characters of finite-dimensional representations of quantum affine algebras, Comm. Math. Phys. 216 (2001), 23–57. [FR]FR E. Frenkel and N. Reshetikhin, The $q$–characters of representations of quantum affine algebras and deformations of $W$–algebras, Contemp. Math. 248 (1999).
- Masaki Kashiwara, Crystal bases of modified quantized enveloping algebra, Duke Math. J. 73 (1994), no. 2, 383–413. MR 1262212, DOI https://doi.org/10.1215/S0012-7094-94-07317-1 [K2]K2 M. Kashiwara, On level zero representations of quantized affine algebras, math.qa/0010293.
- D. Kazhdan and Y. Soibelman, Representations of quantum affine algebras, Selecta Math. (N.S.) 1 (1995), no. 3, 537–595. MR 1366624, DOI https://doi.org/10.1007/BF01589498
- G. Lusztig, Quantum deformations of certain simple modules over enveloping algebras, Adv. in Math. 70 (1988), no. 2, 237–249. MR 954661, DOI https://doi.org/10.1016/0001-8708%2888%2990056-4
- George Lusztig, Introduction to quantum groups, Progress in Mathematics, vol. 110, Birkhäuser Boston, Inc., Boston, MA, 1993. MR 1227098 [N]N H. Nakajima, $t$-analogue of the $q$-characters of finite-dimensional representations of quantum affine algebras, math.QA/0009231. [VV]VV M. Varagnolo and E. Vasserot, Standard modules for quantum affine algebras, math.qa/0006084.
Retrieve articles in Representation Theory of the American Mathematical Society with MSC (2000): 81R50, 17B67
Retrieve articles in all journals with MSC (2000): 81R50, 17B67
Additional Information
Vyjayanthi Chari
Affiliation:
Department of Mathematics, University of California, Riverside, California 92521
Email:
chari@math.ucr.edu
Andrew Pressley
Affiliation:
Department of Mathematics, Kings College, London, WC 2R, 2LS, England, United Kingdom
Email:
anp@mth.kcl.ac.uk
Received by editor(s):
August 23, 2000
Published electronically:
July 5, 2001
Article copyright:
© Copyright 2001
American Mathematical Society