## Weyl modules for classical and quantum affine algebras

HTML articles powered by AMS MathViewer

- by Vyjayanthi Chari and Andrew Pressley
- Represent. Theory
**5**(2001), 191-223 - DOI: https://doi.org/10.1090/S1088-4165-01-00115-7
- Published electronically: July 5, 2001
- PDF | Request permission

## Abstract:

We introduce and study the notion of a Weyl module for the classical affine algebras, these modules are universal finite-dimensional highest weight modules. We conjecture that the modules are the classical limit of a family of irreducible modules of the quantum affine algebra, and prove the conjecture in the case of $sl_2$. The conjecture implies also that the Weyl modules are the classical limits of the standard modules introduced by Nakajima and further studied by Varagnolo and Vasserot.## References

- Tatsuya Akasaka and Masaki Kashiwara,
*Finite-dimensional representations of quantum affine algebras*, Publ. Res. Inst. Math. Sci.**33**(1997), no. 5, 839–867. MR**1607008**, DOI 10.2977/prims/1195145020 - Jonathan Beck,
*Braid group action and quantum affine algebras*, Comm. Math. Phys.**165**(1994), no. 3, 555–568. MR**1301623**, DOI 10.1007/BF02099423 - Jonathan Beck, Vyjayanthi Chari, and Andrew Pressley,
*An algebraic characterization of the affine canonical basis*, Duke Math. J.**99**(1999), no. 3, 455–487. MR**1712630**, DOI 10.1215/S0012-7094-99-09915-5 - Vyjayanthi Chari,
*Integrable representations of affine Lie-algebras*, Invent. Math.**85**(1986), no. 2, 317–335. MR**846931**, DOI 10.1007/BF01389093 - Vyjayanthi Chari and Andrew Pressley,
*New unitary representations of loop groups*, Math. Ann.**275**(1986), no. 1, 87–104. MR**849057**, DOI 10.1007/BF01458586 - Vyjayanthi Chari and Andrew Pressley,
*A new family of irreducible, integrable modules for affine Lie algebras*, Math. Ann.**277**(1987), no. 3, 543–562. MR**891591**, DOI 10.1007/BF01458331 - Vyjayanthi Chari and Andrew Pressley,
*Quantum affine algebras*, Comm. Math. Phys.**142**(1991), no. 2, 261–283. MR**1137064**, DOI 10.1007/BF02102063 - L. Kantorovitch,
*The method of successive approximations for functional equations*, Acta Math.**71**(1939), 63–97. MR**95**, DOI 10.1007/BF02547750 - Vyjayanthi Chari and Andrew Pressley,
*Quantum affine algebras and their representations*, Representations of groups (Banff, AB, 1994) CMS Conf. Proc., vol. 16, Amer. Math. Soc., Providence, RI, 1995, pp. 59–78. MR**1357195**, DOI 10.1007/BF00750760 - Vyjayanthi Chari and Andrew Pressley,
*Quantum affine algebras at roots of unity*, Represent. Theory**1**(1997), 280–328. MR**1463925**, DOI 10.1090/S1088-4165-97-00030-7
[CP7]CPhecke V. Chari and A. Pressley, Integrable and Weyl modules for quantum affine $sl_2$, preprint, math. qa/007123.
[Dr1]Dr1 V.G. Drinfeld, Hopf Algebras and the quantum Yang–Baxter equation, - V. G. Drinfel′d,
*A new realization of Yangians and of quantum affine algebras*, Dokl. Akad. Nauk SSSR**296**(1987), no. 1, 13–17 (Russian); English transl., Soviet Math. Dokl.**36**(1988), no. 2, 212–216. MR**914215** - Howard Garland,
*The arithmetic theory of loop algebras*, J. Algebra**53**(1978), no. 2, 480–551. MR**502647**, DOI 10.1016/0021-8693(78)90294-6 - Victor Ginzburg and Éric Vasserot,
*Langlands reciprocity for affine quantum groups of type $A_n$*, Internat. Math. Res. Notices**3**(1993), 67–85. MR**1208827**, DOI 10.1155/S1073792893000078 - Naihuan Jing,
*On Drinfeld realization of quantum affine algebras*, The Monster and Lie algebras (Columbus, OH, 1996) Ohio State Univ. Math. Res. Inst. Publ., vol. 7, de Gruyter, Berlin, 1998, pp. 195–206. MR**1650669**, DOI 10.1515/9783110801897.195
[FM]FM E. Frenkel and E. Mukhin, Combinatorics of $q$–characters of finite-dimensional representations of quantum affine algebras, Comm. Math. Phys. - Masaki Kashiwara,
*Crystal bases of modified quantized enveloping algebra*, Duke Math. J.**73**(1994), no. 2, 383–413. MR**1262212**, DOI 10.1215/S0012-7094-94-07317-1
[K2]K2 M. Kashiwara, On level zero representations of quantized affine algebras, math.qa/0010293.
- D. Kazhdan and Y. Soibelman,
*Representations of quantum affine algebras*, Selecta Math. (N.S.)**1**(1995), no. 3, 537–595. MR**1366624**, DOI 10.1007/BF01589498 - G. Lusztig,
*Quantum deformations of certain simple modules over enveloping algebras*, Adv. in Math.**70**(1988), no. 2, 237–249. MR**954661**, DOI 10.1016/0001-8708(88)90056-4 - George Lusztig,
*Introduction to quantum groups*, Progress in Mathematics, vol. 110, Birkhäuser Boston, Inc., Boston, MA, 1993. MR**1227098**
[N]N H. Nakajima, $t$-analogue of the $q$-characters of finite-dimensional representations of quantum affine algebras, math.QA/0009231.
[VV]VV M. Varagnolo and E. Vasserot, Standard modules for quantum affine algebras, math.qa/0006084.

*Sov. Math. Dokl.*

**32**(1985) 254–258.

**216**(2001), 23–57. [FR]FR E. Frenkel and N. Reshetikhin, The $q$–characters of representations of quantum affine algebras and deformations of $W$–algebras,

*Contemp. Math.*

**248**(1999).

## Bibliographic Information

**Vyjayanthi Chari**- Affiliation: Department of Mathematics, University of California, Riverside, California 92521
- Email: chari@math.ucr.edu
**Andrew Pressley**- Affiliation: Department of Mathematics, Kings College, London, WC 2R, 2LS, England, United Kingdom
- Email: anp@mth.kcl.ac.uk
- Received by editor(s): August 23, 2000
- Published electronically: July 5, 2001
- © Copyright 2001 American Mathematical Society
- Journal: Represent. Theory
**5**(2001), 191-223 - MSC (2000): Primary 81R50, 17B67
- DOI: https://doi.org/10.1090/S1088-4165-01-00115-7
- MathSciNet review: 1850556