The closure diagram for nilpotent orbits of the split real form of ${E_7}$
HTML articles powered by AMS MathViewer
- by Dragomir Ž. Đoković PDF
- Represent. Theory 5 (2001), 284-316 Request permission
Abstract:
Let $\mathcal {O}_1$ and $\mathcal {O}_2$ be adjoint nilpotent orbits in a real semisimple Lie algebra. Write $\mathcal {O}_1\geq \mathcal {O}_2$ if $\mathcal {O}_2$ is contained in the closure of $\mathcal {O}_1.$ This defines a partial order on the set of such orbits, known as the closure ordering. We determine this order for the split real form E V of $E_7.$References
- Dan Barbasch and Mark R. Sepanski, Closure ordering and the Kostant-Sekiguchi correspondence, Proc. Amer. Math. Soc. 126 (1998), no. 1, 311–317. MR 1422847, DOI 10.1090/S0002-9939-98-04090-8
- W. M. Beynon and N. Spaltenstein, Green functions of finite Chevalley groups of type $E_{n}$ $(n=6,\,7,\,8)$, J. Algebra 88 (1984), no. 2, 584–614. MR 747534, DOI 10.1016/0021-8693(84)90084-X
- N. Bourbaki, Éléments de mathématique. Fasc. XXXVIII: Groupes et algèbres de Lie. Chapitre VII: Sous-algèbres de Cartan, éléments réguliers. Chapitre VIII: Algèbres de Lie semi-simples déployées, Hermann, Paris, 1975 (French). Actualités Sci. Indust., No. 1364. MR 0453824 Ma B.W. Char, K.O. Geddes, G.H. Gonnet, B.L. Leong, M.B. Monagan, and S.M. Watt, Maple V Language reference Manual, Springer–Verlag, New York, 1991, xv+267 pp.
- David H. Collingwood and William M. McGovern, Nilpotent orbits in semisimple Lie algebras, Van Nostrand Reinhold Mathematics Series, Van Nostrand Reinhold Co., New York, 1993. MR 1251060
- Dragomir Ž. Đoković, Classification of nilpotent elements in simple exceptional real Lie algebras of inner type and description of their centralizers, J. Algebra 112 (1988), no. 2, 503–524. MR 926619, DOI 10.1016/0021-8693(88)90104-4
- Dragomir Ž. Đoković, Explicit Cayley triples in real forms of $E_7$, Pacific J. Math. 191 (1999), no. 1, 1–23. MR 1725460, DOI 10.2140/pjm.1999.191.1
- Dragomir Ž. Đoković, The closure diagrams for nilpotent orbits of real forms of $F_4$ and $G_2$, J. Lie Theory 10 (2000), no. 2, 491–510. MR 1774875 DZ4 —, The closure diagrams for nilpotent orbits of real forms of $E_6$, J. Lie Theory 11 (2001), 381–413. DZ5 —The closure diagrams for nilpotent orbits of the real forms E VI and E VII of $E_7$, Represent. Theory 5 (2001), 17–42. DZ6 —, The closure diagram for nilpotent orbits of the real form E IX of $E_8$, Asian J. Math. (to appear), 23 pp.
- Kenzo Mizuno, The conjugate classes of unipotent elements of the Chevalley groups $E_{7}$ and $E_{8}$, Tokyo J. Math. 3 (1980), no. 2, 391–461. MR 605099, DOI 10.3836/tjm/1270473003
- M. Sato and T. Kimura, A classification of irreducible prehomogeneous vector spaces and their relative invariants, Nagoya Math. J. 65 (1977), 1–155. MR 430336, DOI 10.1017/S0027763000017633
- Mikio Sato, Theory of prehomogeneous vector spaces (algebraic part)—the English translation of Sato’s lecture from Shintani’s note, Nagoya Math. J. 120 (1990), 1–34. Notes by Takuro Shintani; Translated from the Japanese by Masakazu Muro. MR 1086566, DOI 10.1017/S0027763000003214
- J. Tits, Normalisateurs de tores. I. Groupes de Coxeter étendus, J. Algebra 4 (1966), 96–116 (French). MR 206117, DOI 10.1016/0021-8693(66)90053-6 LiE M.A.A. van Leeuwen, A.M. Cohen, and B. Lisser, “LiE”, a software package for Lie group theoretic computations, Computer Algebra Group of CWI, Amsterdam, The Netherlands.
Additional Information
- Dragomir Ž. Đoković
- Affiliation: Department of Pure Mathematics, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
- Email: djokovic@uwaterloo.ca
- Received by editor(s): March 9, 2001
- Received by editor(s) in revised form: August 17, 2001
- Published electronically: October 3, 2001
- Additional Notes: Supported in part by the NSERC Grant A-5285
- © Copyright 2001 American Mathematical Society
- Journal: Represent. Theory 5 (2001), 284-316
- MSC (2000): Primary 05B15, 05B20; Secondary 05B05
- DOI: https://doi.org/10.1090/S1088-4165-01-00124-8
- MathSciNet review: 1857083