## The closure diagram for nilpotent orbits of the split real form of ${E_7}$

HTML articles powered by AMS MathViewer

- by Dragomir Ž. Đoković PDF
- Represent. Theory
**5**(2001), 284-316 Request permission

## Abstract:

Let $\mathcal {O}_1$ and $\mathcal {O}_2$ be adjoint nilpotent orbits in a real semisimple Lie algebra. Write $\mathcal {O}_1\geq \mathcal {O}_2$ if $\mathcal {O}_2$ is contained in the closure of $\mathcal {O}_1.$ This defines a partial order on the set of such orbits, known as the closure ordering. We determine this order for the split real form E V of $E_7.$## References

- Dan Barbasch and Mark R. Sepanski,
*Closure ordering and the Kostant-Sekiguchi correspondence*, Proc. Amer. Math. Soc.**126**(1998), no. 1, 311–317. MR**1422847**, DOI 10.1090/S0002-9939-98-04090-8 - W. M. Beynon and N. Spaltenstein,
*Green functions of finite Chevalley groups of type $E_{n}$ $(n=6,\,7,\,8)$*, J. Algebra**88**(1984), no. 2, 584–614. MR**747534**, DOI 10.1016/0021-8693(84)90084-X - N. Bourbaki,
*Éléments de mathématique. Fasc. XXXVIII: Groupes et algèbres de Lie. Chapitre VII: Sous-algèbres de Cartan, éléments réguliers. Chapitre VIII: Algèbres de Lie semi-simples déployées*, Hermann, Paris, 1975 (French). Actualités Sci. Indust., No. 1364. MR**0453824**
Ma B.W. Char, K.O. Geddes, G.H. Gonnet, B.L. Leong, M.B. Monagan, and S.M. Watt, - David H. Collingwood and William M. McGovern,
*Nilpotent orbits in semisimple Lie algebras*, Van Nostrand Reinhold Mathematics Series, Van Nostrand Reinhold Co., New York, 1993. MR**1251060** - Dragomir Ž. Đoković,
*Classification of nilpotent elements in simple exceptional real Lie algebras of inner type and description of their centralizers*, J. Algebra**112**(1988), no. 2, 503–524. MR**926619**, DOI 10.1016/0021-8693(88)90104-4 - Dragomir Ž. Đoković,
*Explicit Cayley triples in real forms of $E_7$*, Pacific J. Math.**191**(1999), no. 1, 1–23. MR**1725460**, DOI 10.2140/pjm.1999.191.1 - Dragomir Ž. Đoković,
*The closure diagrams for nilpotent orbits of real forms of $F_4$ and $G_2$*, J. Lie Theory**10**(2000), no. 2, 491–510. MR**1774875**
DZ4 —, - Kenzo Mizuno,
*The conjugate classes of unipotent elements of the Chevalley groups $E_{7}$ and $E_{8}$*, Tokyo J. Math.**3**(1980), no. 2, 391–461. MR**605099**, DOI 10.3836/tjm/1270473003 - M. Sato and T. Kimura,
*A classification of irreducible prehomogeneous vector spaces and their relative invariants*, Nagoya Math. J.**65**(1977), 1–155. MR**430336**, DOI 10.1017/S0027763000017633 - Mikio Sato,
*Theory of prehomogeneous vector spaces (algebraic part)—the English translation of Sato’s lecture from Shintani’s note*, Nagoya Math. J.**120**(1990), 1–34. Notes by Takuro Shintani; Translated from the Japanese by Masakazu Muro. MR**1086566**, DOI 10.1017/S0027763000003214 - J. Tits,
*Normalisateurs de tores. I. Groupes de Coxeter étendus*, J. Algebra**4**(1966), 96–116 (French). MR**206117**, DOI 10.1016/0021-8693(66)90053-6
LiE M.A.A. van Leeuwen, A.M. Cohen, and B. Lisser, “LiE”, a software package for Lie group theoretic computations, Computer Algebra Group of CWI, Amsterdam, The Netherlands.

*Maple V Language reference Manual*, Springer–Verlag, New York, 1991, xv+267 pp.

*The closure diagrams for nilpotent orbits of real forms of $E_6$*, J. Lie Theory

**11**(2001), 381–413. DZ5 —

*The closure diagrams for nilpotent orbits of the real forms E VI and E VII of $E_7$*, Represent. Theory

**5**(2001), 17–42. DZ6 —,

*The closure diagram for nilpotent orbits of the real form E IX of $E_8$*, Asian J. Math. (to appear), 23 pp.

## Additional Information

**Dragomir Ž. Đoković**- Affiliation: Department of Pure Mathematics, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
- Email: djokovic@uwaterloo.ca
- Received by editor(s): March 9, 2001
- Received by editor(s) in revised form: August 17, 2001
- Published electronically: October 3, 2001
- Additional Notes: Supported in part by the NSERC Grant A-5285
- © Copyright 2001 American Mathematical Society
- Journal: Represent. Theory
**5**(2001), 284-316 - MSC (2000): Primary 05B15, 05B20; Secondary 05B05
- DOI: https://doi.org/10.1090/S1088-4165-01-00124-8
- MathSciNet review: 1857083