Nonvanishing of a certain sesquilinear form in the theta correspondence
HTML articles powered by AMS MathViewer
- by Hongyu He PDF
- Represent. Theory 5 (2001), 437-454 Request permission
Abstract:
Suppose $2n+1 \geq p+q$. In an earlier paper in 2000 we study a certain sesquilinear form $(,)_{\pi }$ introduced by Jian-Shu Li in 1989. For $\pi$ in the semistable range of $\theta (MO(p,q) \rightarrow MSp_{2n}(\mathbb {R}))$, if $(,)_{\pi }$ does not vanish, then it induces a sesquilinear form on $\theta (\pi )$. In another work in 2000 we proved that $(,)_{\pi }$ is positive semidefinite under a mild growth condition on the matrix coefficients of $\pi$. In this paper, we show that either $(,)_{\pi }$ or $(,)_{\pi \otimes \det }$ is nonvanishing. These results combined with one result of Przebinda suggest the existence of certain unipotent representations of $Mp_{2n}(\mathbb {R})$ beyond unitary representations of low rank.References
- V. Bargmann, On a Hilbert space of analytic functions and an associated integral transform, Comm. Pure Appl. Math. 14 (1961), 187–214. MR 157250, DOI 10.1002/cpa.3160140303
- R. H. J. Germay, Généralisation de l’équation de Hesse, Ann. Soc. Sci. Bruxelles Sér. I 59 (1939), 139–144 (French). MR 86, DOI 10.1007/978-3-662-12918-0
- Sigurđur Helgason, Differential geometry and symmetric spaces, Pure and Applied Mathematics, Vol. XII, Academic Press, New York-London, 1962. MR 0145455
- R. H. J. Germay, Généralisation de l’équation de Hesse, Ann. Soc. Sci. Bruxelles Sér. I 59 (1939), 139–144 (French). MR 86, DOI 10.1090/surv/083
- Sigurdur Helgason, Differential geometry, Lie groups, and symmetric spaces, Pure and Applied Mathematics, vol. 80, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1978. MR 514561
- Hongyu L. He, An analytic compactification of symplectic group, J. Differential Geom. 51 (1999), no. 2, 375–399. MR 1728304, DOI 10.4310/jdg/1214425071 hhe1 Hongyu L. He, Compactification of Classical Groups, to appear in Communications in Analysis and Geometry, 2000.
- Hongyu He, Theta correspondence. I. Semistable range: construction and irreducibility, Commun. Contemp. Math. 2 (2000), no. 2, 255–283. MR 1759791, DOI 10.1142/S0219199700000128 unit Hongyu L. He, Unitary Representations and Theta Correspondence: From Orthogonal Groups to Symplectic Groups, submitted to Journal of Functional Analysis, 2000. thesis Hongyu L. He, Howe’s Rank and Dual Pair Correspondence in Semistable Range, M.I.T. Thesis, (1-127).
- Roger Howe, Transcending classical invariant theory, J. Amer. Math. Soc. 2 (1989), no. 3, 535–552. MR 985172, DOI 10.1090/S0894-0347-1989-0985172-6
- Roger Howe, Small unitary representations of classical groups, Group representations, ergodic theory, operator algebras, and mathematical physics (Berkeley, Calif., 1984) Math. Sci. Res. Inst. Publ., vol. 6, Springer, New York, 1987, pp. 121–150. MR 880374, DOI 10.1007/978-1-4612-4722-7_{4}
- Anthony W. Knapp, Representation theory of semisimple groups, Princeton Mathematical Series, vol. 36, Princeton University Press, Princeton, NJ, 1986. An overview based on examples. MR 855239, DOI 10.1515/9781400883974
- Shrawan Kumar, Proof of the Parthasarathy-Ranga Rao-Varadarajan conjecture, Invent. Math. 93 (1988), no. 1, 117–130. MR 943925, DOI 10.1007/BF01393689
- M. Kashiwara and M. Vergne, On the Segal-Shale-Weil representations and harmonic polynomials, Invent. Math. 44 (1978), no. 1, 1–47. MR 463359, DOI 10.1007/BF01389900
- Jian-Shu Li, On the classification of irreducible low rank unitary representations of classical groups, Compositio Math. 71 (1989), no. 1, 29–48. MR 1008803
- Jian-Shu Li, Singular unitary representations of classical groups, Invent. Math. 97 (1989), no. 2, 237–255. MR 1001840, DOI 10.1007/BF01389041
- Jian-Shu Li, Theta lifting for unitary representations with nonzero cohomology, Duke Math. J. 61 (1990), no. 3, 913–937. MR 1084465, DOI 10.1215/S0012-7094-90-06135-6
- Tomasz Przebinda, Characters, dual pairs, and unitary representations, Duke Math. J. 69 (1993), no. 3, 547–592. MR 1208811, DOI 10.1215/S0012-7094-93-06923-2
- P. L. Robinson and J. H. Rawnsley, The metaplectic representation, $\textrm {Mp}^c$ structures and geometric quantization, Mem. Amer. Math. Soc. 81 (1989), no. 410, iv+92. MR 1015418, DOI 10.1090/memo/0410
- David A. Vogan Jr., Unitary representations of reductive Lie groups, Annals of Mathematics Studies, vol. 118, Princeton University Press, Princeton, NJ, 1987. MR 908078, DOI 10.1515/9781400882380
Additional Information
- Hongyu He
- Affiliation: Department of Mathematics and Statistics, Georgia State University, Atlanta, Georgia 30303-3083
- Email: matjnl@livingstone.cs.gsu.edu
- Received by editor(s): April 24, 2001
- Received by editor(s) in revised form: July 30, 2001
- Published electronically: October 30, 2001
- © Copyright 2001 American Mathematical Society
- Journal: Represent. Theory 5 (2001), 437-454
- MSC (2000): Primary 22E45
- DOI: https://doi.org/10.1090/S1088-4165-01-00140-6
- MathSciNet review: 1870597