Classification of admissible nilpotent orbits in simple exceptional real Lie algebras of inner type
HTML articles powered by AMS MathViewer
- by Alfred G. Noël
- Represent. Theory 5 (2001), 455-493
- DOI: https://doi.org/10.1090/S1088-4165-01-00141-8
- Published electronically: November 9, 2001
- PDF | Request permission
Abstract:
In this paper we give a classification of admissible nilpotent orbits of the noncompact simple exceptional real Lie groups of inner type. We use a lemma of Takuya Ohta and some information from the work of Dragomir Djoković to construct a simple algorithm which allows us to decide the admissiblity of a given orbit.References
- L. Auslander and B. Kostant, Polarization and unitary representations of solvable Lie groups, Invent. Math. 14 (1971), 255–354. MR 293012, DOI 10.1007/BF01389744 [Bo]Bo N. Bourbaki, Groupes et Algèbre de Lie, Chapitres 4,5,6, Elements de mathématique, Masson (1981).
- C. W. Curtis, Corrections and additions to: “On the degrees and rationality of certain characters of finite Chevalley groups” (Trans. Amer. Math. Soc. 165 (1972), 251–273) by C. T. Benson and Curtis, Trans. Amer. Math. Soc. 202 (1975), 405–406. MR 364483, DOI 10.1090/S0002-9947-1975-0364483-8
- Michel Duflo, Construction de représentations unitaires d’un groupe de Lie, Harmonic analysis and group representations, Liguori, Naples, 1982, pp. 129–221 (French, with English summary). MR 777341
- S. Minakshi Sundaram, On non-linear partial differential equations of the hyperbolic type, Proc. Indian Acad. Sci., Sect. A. 9 (1939), 495–503. MR 0000089, DOI 10.1007/BF03046994
- Dragomir Ž. Đoković, Proof of a conjecture of Kostant, Trans. Amer. Math. Soc. 302 (1987), no. 2, 577–585. MR 891636, DOI 10.1090/S0002-9947-1987-0891636-0 [Dy]Dy E. Dynkin, Semisimple subalgebras of simple Lie algebras, Selected papers of E.B. Dynkin with commentary edited by Yushkevich, Seitz and Onishchik AMS, (2000), 175-309. [Dy1]Dy1 E. Dynkin, Semisimple subalgebras of simple Lie algebras, Amer. Soc. Transl. Ser. 2 6, (1957), 111-245.
- A. A. Kirillov, Unitary representations of nilpotent Lie groups, Uspehi Mat. Nauk 17 (1962), no. 4 (106), 57–110 (Russian). MR 0142001, DOI 10.1070/RM1962v017n04ABEH004118
- B. Kostant and S. Rallis, Orbits and representations associated with symmetric spaces, Amer. J. Math. 93 (1971), 753–809. MR 311837, DOI 10.2307/2373470
- Anthony W. Knapp, Lie groups beyond an introduction, Progress in Mathematics, vol. 140, Birkhäuser Boston, Inc., Boston, MA, 1996. MR 1399083, DOI 10.1007/978-1-4757-2453-0 [Ne]Ne M. Nevins, Admissible nilpotent coadjoint orbits in the p-adic reductive groups, Ph.D. Thesis M.I.T. Cambridge, MA (June 1998).
- George Lusztig, Some problems in the representation theory of finite Chevalley groups, The Santa Cruz Conference on Finite Groups (Univ. California, Santa Cruz, Calif., 1979) Proc. Sympos. Pure Math., vol. 37, Amer. Math. Soc., Providence, R.I., 1980, pp. 313–317. MR 604598, DOI 10.1090/pspum/037/604598
- Alfred G. Noël, Nilpotent orbits and theta-stable parabolic subalgebras, Represent. Theory 2 (1998), 1–32. MR 1600330, DOI 10.1090/S1088-4165-98-00038-7 [No2]No2 A. G. Noël, Classification of admissible nilpotent orbits in simple real Lie algebras $E_{6(6)}$ and $E_{6(-26)}$, Amer. Math. Soc., J. Representation Theory, to appear.
- Takuya Ohta, Classification of admissible nilpotent orbits in the classical real Lie algebras, J. Algebra 136 (1991), no. 2, 290–333. MR 1089302, DOI 10.1016/0021-8693(91)90049-E
- Jir\B{o} Sekiguchi, Remarks on real nilpotent orbits of a symmetric pair, J. Math. Soc. Japan 39 (1987), no. 1, 127–138. MR 867991, DOI 10.2969/jmsj/03910127 [Se]Se J. Sekiguchi, Remarks on real nilpotent orbits of a symmetric pair, J. Math. Soc. Japan 39, No. 1 (1987), 127-138.
- T. A. Springer and R. Steinberg, Conjugacy classes, Seminar on Algebraic Groups and Related Finite Groups (The Institute for Advanced Study, Princeton, N.J., 1968/69) Lecture Notes in Mathematics, Vol. 131, Springer, Berlin, 1970, pp. 167–266. MR 0268192, DOI 10.1007/BFb0081546
- David A. Vogan Jr., Unitary representations of reductive Lie groups, Annals of Mathematics Studies, vol. 118, Princeton University Press, Princeton, NJ, 1987. MR 908078, DOI 10.1515/9781400882380
- David A. Vogan Jr., Associated varieties and unipotent representations, Harmonic analysis on reductive groups (Brunswick, ME, 1989) Progr. Math., vol. 101, Birkhäuser Boston, Boston, MA, 1991, pp. 315–388. MR 1168491, DOI 10.1007/978-1-4612-0455-8_{1}7
Bibliographic Information
- Alfred G. Noël
- Affiliation: Department of Mathematics, University of Massachusetts, Boston, Massachusetts 02125
- Address at time of publication: Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
- Email: alfred.noel@umb.edu
- Received by editor(s): April 5, 2001
- Received by editor(s) in revised form: September 28, 2001
- Published electronically: November 9, 2001
- © Copyright 2001 American Mathematical Society
- Journal: Represent. Theory 5 (2001), 455-493
- MSC (2000): Primary 17B20, 17B70
- DOI: https://doi.org/10.1090/S1088-4165-01-00141-8
- MathSciNet review: 1870598