## Spherical functions of the symmetric space $G(\mathbb {F}_{q^{2}})/G(\mathbb {F}_q)$

HTML articles powered by AMS MathViewer

- by Anthony Henderson PDF
- Represent. Theory
**5**(2001), 581-614 Request permission

## Abstract:

We apply Lusztig’s theory of character sheaves to the problem of calculating the spherical functions of $G(\mathbb {F}_{q^{2}})/G(\mathbb {F}_q)$, where $G$ is a connected reductive algebraic group. We obtain the solution for generic spherical functions for any $G$, and for all spherical functions when $G=GL_n$. The proof includes a result about convolution of character sheaves and its interaction with the associated two-sided cells.## References

- Eiichi Bannai, Noriaki Kawanaka, and Sung-Yell Song,
*The character table of the Hecke algebra ${\scr H}(\textrm {GL}_{2n}(\textbf {F}_q),\textrm {Sp}_{2n}(\textbf {F}_q))$*, J. Algebra**129**(1990), no. 2, 320–366. MR**1040942**, DOI 10.1016/0021-8693(90)90224-C - A. A. Beĭlinson, J. Bernstein, and P. Deligne,
*Faisceaux pervers*, Analysis and topology on singular spaces, I (Luminy, 1981) Astérisque, vol. 100, Soc. Math. France, Paris, 1982, pp. 5–171 (French). MR**751966** - Joseph Bernstein and Valery Lunts,
*Equivariant sheaves and functors*, Lecture Notes in Mathematics, vol. 1578, Springer-Verlag, Berlin, 1994. MR**1299527**, DOI 10.1007/BFb0073549 - P. Deligne and G. Lusztig,
*Representations of reductive groups over finite fields*, Ann. of Math. (2)**103**(1976), no. 1, 103–161. MR**393266**, DOI 10.2307/1971021 - Victor Ginsburg,
*Admissible modules on a symmetric space*, Astérisque**173-174**(1989), 9–10, 199–255. Orbites unipotentes et représentations, III. MR**1021512** - Roderick Gow,
*Two multiplicity-free permutation representations of the general linear group $\textrm {GL}(n,q^2)$*, Math. Z.**188**(1984), no. 1, 45–54. MR**767361**, DOI 10.1007/BF01163871 - Saunders MacLane,
*Steinitz field towers for modular fields*, Trans. Amer. Math. Soc.**46**(1939), 23–45. MR**17**, DOI 10.1090/S0002-9947-1939-0000017-3
grojnowski I. Grojnowski, - R. Hotta and T. A. Springer,
*A specialization theorem for certain Weyl group representations and an application to the Green polynomials of unitary groups*, Invent. Math.**41**(1977), no. 2, 113–127. MR**486164**, DOI 10.1007/BF01418371 - Gérard Laumon,
*Faisceaux caractères (d’après Lusztig)*, Astérisque**177-178**(1989), Exp. No. 709, 231–260 (French). Séminaire Bourbaki, Vol. 1988/89. MR**1040575** - George Lusztig,
*Characters of reductive groups over a finite field*, Annals of Mathematics Studies, vol. 107, Princeton University Press, Princeton, NJ, 1984. MR**742472**, DOI 10.1515/9781400881772 - Radu Bǎdescu,
*On a problem of Goursat*, Gaz. Mat.**44**(1939), 571–577. MR**0000087** - George Lusztig,
*Green functions and character sheaves*, Ann. of Math. (2)**131**(1990), no. 2, 355–408. MR**1043271**, DOI 10.2307/1971496 - G. Lusztig,
*$G(F_q)$-invariants in irreducible $G(F_{q^2})$-modules*, Represent. Theory**4**(2000), 446–465. MR**1780718**, DOI 10.1090/S1088-4165-00-00114-X - I. G. Macdonald,
*Symmetric functions and Hall polynomials*, 2nd ed., Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1995. With contributions by A. Zelevinsky; Oxford Science Publications. MR**1354144** - J. G. M. Mars and T. A. Springer,
*Character sheaves*, Astérisque**173-174**(1989), 9, 111–198. Orbites unipotentes et représentations, III. MR**1021511** - Toshiaki Shoji,
*Character sheaves and almost characters of reductive groups. I, II*, Adv. Math.**111**(1995), no. 2, 244–313, 314–354. MR**1318530**, DOI 10.1006/aima.1995.1024 - Bhama Srinivasan,
*On Macdonald’s symmetric functions*, Bull. London Math. Soc.**24**(1992), no. 6, 519–525. MR**1183306**, DOI 10.1112/blms/24.6.519

*Character Sheaves on Symmetric Spaces*, PhD thesis, Massachusetts Institute of Technology, 1992. myspherical A. Henderson,

*Spherical functions and character sheaves*. Available at: www.maths.usyd.edu.au:8000/u/anthonyh/.

## Additional Information

**Anthony Henderson**- Affiliation: Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
- Address at time of publication: School of Mathematics and Statistics, University of Sydney, NSW 2006, Australia
- MR Author ID: 687061
- ORCID: 0000-0002-3965-7259
- Email: anthonyh@maths.usyd.edu.au
- Received by editor(s): December 1, 2000
- Received by editor(s) in revised form: August 14, 2001
- Published electronically: November 28, 2001
- © Copyright 2001 American Mathematical Society
- Journal: Represent. Theory
**5**(2001), 581-614 - MSC (2000): Primary 20G40, 20G05; Secondary 20C15, 32C38
- DOI: https://doi.org/10.1090/S1088-4165-01-00119-4
- MathSciNet review: 1870603