Remote Access Representation Theory
Green Open Access

Representation Theory

ISSN 1088-4165

 
 

 

Constructible characters, leading coefficients and left cells for finite Coxeter groups with unequal parameters


Author: Meinolf Geck
Journal: Represent. Theory 6 (2002), 1-30
MSC (2000): Primary 20C08; Secondary 20C15
DOI: https://doi.org/10.1090/S1088-4165-02-00128-0
Published electronically: March 27, 2002
MathSciNet review: 1915085
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Following Lusztig, we investigate constructible characters, leading coefficients and left cells for a finite Coxeter group $W$ in the case of unequal parameters. We obtain explicit results for $W$ of type $F_4$, $B_n$ and $I_2(m)$ ($m$ even) which support Lusztig’s conjecture that known results about left cells in the equal parameter case should remain valid in the case of unequal parameters.


References [Enhancements On Off] (What's this?)

  • Dean Alvis, The left cells of the Coxeter group of type $H_4$, J. Algebra 107 (1987), no. 1, 160–168. MR 883878, DOI https://doi.org/10.1016/0021-8693%2887%2990082-2
  • AlLu D. Alvis and G. Lusztig, The representations and generic degrees of the Hecke algebra of type ${H}_4$, J. Reine Angew. Math. 336 (1982), 201–212; corrections, ibid. 449 (1994), 217–218. ;
  • Susumu Ariki and Kazuhiko Koike, A Hecke algebra of $({\bf Z}/r{\bf Z})\wr {\mathfrak S}_n$ and construction of its irreducible representations, Adv. Math. 106 (1994), no. 2, 216–243. MR 1279219, DOI https://doi.org/10.1006/aima.1994.1057
  • Dan Barbasch and David Vogan, Primitive ideals and orbital integrals in complex exceptional groups, J. Algebra 80 (1983), no. 2, 350–382. MR 691809, DOI https://doi.org/10.1016/0021-8693%2883%2990006-6
  • BroKim M. Broué and S. Kim, Sur les blocs de Rouquier des algèbres de Hecke cyclotomiques, preprint (October 2000).
  • Roger W. Carter, Finite groups of Lie type, Pure and Applied Mathematics (New York), John Wiley & Sons, Inc., New York, 1985. Conjugacy classes and complex characters; A Wiley-Interscience Publication. MR 794307
  • CR2 C. W. Curtis and I. Reiner, Methods of representation theory Vol. I and II, Wiley, New York, 1981 and 1987. ;
  • Richard Dipper, Gordon James, and Eugene Murphy, Hecke algebras of type $B_n$ at roots of unity, Proc. London Math. Soc. (3) 70 (1995), no. 3, 505–528. MR 1317512, DOI https://doi.org/10.1112/plms/s3-70.3.505
  • Meinolf Geck, Gerhard Hiss, Frank Lübeck, Gunter Malle, and Götz Pfeiffer, CHEVIE—a system for computing and processing generic character tables, Appl. Algebra Engrg. Comm. Comput. 7 (1996), no. 3, 175–210. Computational methods in Lie theory (Essen, 1994). MR 1486215, DOI https://doi.org/10.1007/BF01190329
  • ourbuch M. Geck and G. Pfeiffer, Characters of finite Coxeter groups and Iwahori–Hecke algebras, London Math. Soc. Monographs, New Series 21, Oxford University Press, 2000. Hoefs P. N. Hoefsmit, Representations of Hecke algebras of finite groups with BN pairs of classical type, Ph.D. thesis, University of British Columbia, Vancouver, 1974. Iancu L. Iancu, Left cells in type $B_n$ with unequal parameters, in preparation.
  • David Kazhdan and George Lusztig, Representations of Coxeter groups and Hecke algebras, Invent. Math. 53 (1979), no. 2, 165–184. MR 560412, DOI https://doi.org/10.1007/BF01390031
  • G. Lusztig, A class of irreducible representations of a Weyl group, Nederl. Akad. Wetensch. Indag. Math. 41 (1979), no. 3, 323–335. MR 546372
  • George Lusztig, Unipotent characters of the symplectic and odd orthogonal groups over a finite field, Invent. Math. 64 (1981), no. 2, 263–296. MR 629472, DOI https://doi.org/10.1007/BF01389170
  • George Lusztig, A class of irreducible representations of a Weyl group. II, Nederl. Akad. Wetensch. Indag. Math. 44 (1982), no. 2, 219–226. MR 662657
  • Lusztig83 G. Lusztig, Left cells in Weyl groups, Lie Group Representations, I (R. L. R. Herb and J. Rosenberg, eds.), Lecture Notes in Math., vol. 1024, Springer-Verlag, 1983, pp. 99–111.
  • George Lusztig, Characters of reductive groups over a finite field, Annals of Mathematics Studies, vol. 107, Princeton University Press, Princeton, NJ, 1984. MR 742472
  • George Lusztig, Cells in affine Weyl groups, Algebraic groups and related topics (Kyoto/Nagoya, 1983) Adv. Stud. Pure Math., vol. 6, North-Holland, Amsterdam, 1985, pp. 255–287. MR 803338, DOI https://doi.org/10.2969/aspm/00610255
  • George Lusztig, Sur les cellules gauches des groupes de Weyl, C. R. Acad. Sci. Paris Sér. I Math. 302 (1986), no. 1, 5–8 (French, with English summary). MR 827096
  • G. Lusztig, Leading coefficients of character values of Hecke algebras, The Arcata Conference on Representations of Finite Groups (Arcata, Calif., 1986) Proc. Sympos. Pure Math., vol. 47, Amer. Math. Soc., Providence, RI, 1987, pp. 235–262. MR 933415, DOI https://doi.org/10.1007/bf01389157
  • Lusztig01 G. Lusztig, Lectures on affine Hecke algebras with unequal parameters. Available at arXiv:math.RT/0108172.
  • Raphaël Rouquier, Familles et blocs d’algèbres de Hecke, C. R. Acad. Sci. Paris Sér. I Math. 329 (1999), no. 12, 1037–1042 (French, with English and French summaries). MR 1735880, DOI https://doi.org/10.1016/S0764-4442%2800%2988470-0
  • gap M. Schönert et al., GAP – groups, algorithms, and programming, Lehrstuhl D für Mathematik, RWTH Aachen, Germany, fourth ed., (1994).
  • Nan Hua Xi, Representations of affine Hecke algebras, Lecture Notes in Mathematics, vol. 1587, Springer-Verlag, Berlin, 1994. MR 1320509

Similar Articles

Retrieve articles in Representation Theory of the American Mathematical Society with MSC (2000): 20C08, 20C15

Retrieve articles in all journals with MSC (2000): 20C08, 20C15


Additional Information

Meinolf Geck
Affiliation: Institut Girard Desargues, bat. Jean Braconnier, Université Lyon 1, 21 av Claude Bernard, F–69622 Villeurbanne Cedex, France
MR Author ID: 272405
Email: geck@desargues.univ-lyon1.fr

Received by editor(s): June 8, 2001
Received by editor(s) in revised form: November 7, 2001
Published electronically: March 27, 2002
Article copyright: © Copyright 2002 American Mathematical Society