Twining Character Formula of Kac-Wakimoto Type for Affine Lie Algebras
HTML articles powered by AMS MathViewer
- by Satoshi Naito PDF
- Represent. Theory 6 (2002), 70-100 Request permission
Abstract:
We prove a formula of Kac-Wakimoto type for the twining characters of irreducible highest weight modules of symmetric, noncritical, integrally dominant highest weights over affine Lie algebras. This formula describes the twining character in terms of the subgroup of the integral Weyl group consisting of elements which commute with the Dynkin diagram automorphism. The main tools in our proof are the (Jantzen) translation functor and the existence result of a certain local composition series which is stable under the Dynkin diagram automorphism.References
- Richard Borcherds, Generalized Kac-Moody algebras, J. Algebra 115 (1988), no. 2, 501–512. MR 943273, DOI 10.1016/0021-8693(88)90275-X
- Vinay V. Deodhar, Ofer Gabber, and Victor Kac, Structure of some categories of representations of infinite-dimensional Lie algebras, Adv. in Math. 45 (1982), no. 1, 92–116. MR 663417, DOI 10.1016/S0001-8708(82)80014-5
- Miloud Benayed, Lie bialgebras real cohomology [Lie bialgebras and cohomology], J. Lie Theory 7 (1997), no. 2, 287–292. MR 1473171, DOI 10.1006/jabr.1996.6907
- Jürgen Fuchs, Bert Schellekens, and Christoph Schweigert, From Dynkin diagram symmetries to fixed point structures, Comm. Math. Phys. 180 (1996), no. 1, 39–97. MR 1403859, DOI 10.1007/BF02101182
- Jens Carsten Jantzen, Moduln mit einem höchsten Gewicht, Lecture Notes in Mathematics, vol. 750, Springer, Berlin, 1979 (German). MR 552943, DOI 10.1007/BFb0069521
- Victor G. Kac, Infinite-dimensional Lie algebras, 3rd ed., Cambridge University Press, Cambridge, 1990. MR 1104219, DOI 10.1017/CBO9780511626234
- Victor G. Kac and Minoru Wakimoto, Modular invariant representations of infinite-dimensional Lie algebras and superalgebras, Proc. Nat. Acad. Sci. U.S.A. 85 (1988), no. 14, 4956–4960. MR 949675, DOI 10.1073/pnas.85.14.4956
- Seok-Jin Kang and Jae-Hoon Kwon, Graded Lie superalgebras, supertrace formula, and orbit Lie superalgebras, Proc. London Math. Soc. (3) 81 (2000), no. 3, 675–724. MR 1781152, DOI 10.1112/S0024611500012661
- Masaki Kashiwara and Toshiyuki Tanisaki, Kazhdan-Lusztig conjecture for symmetrizable Kac-Moody Lie algebras. III. Positive rational case, Asian J. Math. 2 (1998), no. 4, 779–832. Mikio Sato: a great Japanese mathematician of the twentieth century. MR 1734129, DOI 10.4310/AJM.1998.v2.n4.a8
- Masaki Kashiwara and Toshiyuki Tanisaki, Characters of irreducible modules with non-critical highest weights over affine Lie algebras, Representations and quantizations (Shanghai, 1998) China High. Educ. Press, Beijing, 2000, pp. 275–296. MR 1802178
- Shrawan Kumar, Extension of the category ${\scr O}^g$ and a vanishing theorem for the Ext functor for Kac-Moody algebras, J. Algebra 108 (1987), no. 2, 472–491. MR 892913, DOI 10.1016/0021-8693(87)90111-6
- Shrawan Kumar, Toward proof of Lusztig’s conjecture concerning negative level representations of affine Lie algebras, J. Algebra 164 (1994), no. 2, 515–527. MR 1271251, DOI 10.1006/jabr.1994.1073
- Robert V. Moody and Arturo Pianzola, Lie algebras with triangular decompositions, Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley & Sons, Inc., New York, 1995. A Wiley-Interscience Publication. MR 1323858
- Satoshi Naito, Embedding into Kac-Moody algebras and construction of folding subalgebras for generalized Kac-Moody algebras, Japan. J. Math. (N.S.) 18 (1992), no. 1, 155–171. MR 1173834, DOI 10.4099/math1924.18.155 [N2]N2 S. Naito, Character formula of Kac-Wakimoto type for generalized Kac-Moody algebras, J. Pure Appl. Algebra 166 (2002), 105–123.
Additional Information
- Satoshi Naito
- Affiliation: Institute of Mathematics, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
- Email: naito@math.tsukuba.ac.jp
- Received by editor(s): December 19, 2000
- Received by editor(s) in revised form: February 17, 2002
- Published electronically: July 16, 2002
- © Copyright 2002 American Mathematical Society
- Journal: Represent. Theory 6 (2002), 70-100
- MSC (2000): Primary 17B67; Secondary 17B10, 17B40
- DOI: https://doi.org/10.1090/S1088-4165-02-00120-6
- MathSciNet review: 1915087