Isogenies of Hecke algebras and a Langlands correspondence for ramified principal series representations
HTML articles powered by AMS MathViewer
- by Mark Reeder
- Represent. Theory 6 (2002), 101-126
- DOI: https://doi.org/10.1090/S1088-4165-02-00167-X
- Published electronically: July 16, 2002
- PDF | Request permission
Abstract:
This paper gives a Langlands classification of constituents of ramified principal series representations for split $p$-adic groups with connected center.References
- Dean Alvis, Ratios of dual generic degrees of a finite Coxeter group, Proc. Amer. Math. Soc. 91 (1984), no. 4, 532–536. MR 746083, DOI 10.1090/S0002-9939-1984-0746083-1
- Armand Borel, Admissible representations of a semi-simple group over a local field with vectors fixed under an Iwahori subgroup, Invent. Math. 35 (1976), 233–259. MR 444849, DOI 10.1007/BF01390139
- Armand Borel, Linear algebraic groups, 2nd ed., Graduate Texts in Mathematics, vol. 126, Springer-Verlag, New York, 1991. MR 1102012, DOI 10.1007/978-1-4612-0941-6 [BGG]BGG I.N. Bernstein, I.M. Gel′fand, I.S. Gel′fand, Schubert cells and cohomology of the spaces $G/P$, Russian Math. Surveys 28 (1973), 1–26.
- Colin J. Bushnell and Philip C. Kutzko, Smooth representations of reductive $p$-adic groups: structure theory via types, Proc. London Math. Soc. (3) 77 (1998), no. 3, 582–634. MR 1643417, DOI 10.1112/S0024611598000574
- Roger W. Carter, Finite groups of Lie type, Pure and Applied Mathematics (New York), John Wiley & Sons, Inc., New York, 1985. Conjugacy classes and complex characters; A Wiley-Interscience Publication. MR 794307
- Neil Chriss and Victor Ginzburg, Representation theory and complex geometry, Birkhäuser Boston, Inc., Boston, MA, 1997. MR 1433132
- C. De Concini, G. Lusztig, and C. Procesi, Homology of the zero-set of a nilpotent vector field on a flag manifold, J. Amer. Math. Soc. 1 (1988), no. 1, 15–34. MR 924700, DOI 10.1090/S0894-0347-1988-0924700-2
- N. Iwahori and H. Matsumoto, On some Bruhat decomposition and the structure of the Hecke rings of ${\mathfrak {p}}$-adic Chevalley groups, Inst. Hautes Études Sci. Publ. Math. 25 (1965), 5–48. MR 185016, DOI 10.1007/BF02684396
- David Kazhdan and George Lusztig, Proof of the Deligne-Langlands conjecture for Hecke algebras, Invent. Math. 87 (1987), no. 1, 153–215. MR 862716, DOI 10.1007/BF01389157
- Victor Ginzburg, Geometrical aspects of representation theory, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Berkeley, Calif., 1986) Amer. Math. Soc., Providence, RI, 1987, pp. 840–848. MR 934285, DOI 10.1090/S0894-0347-1989-0991016-9 [L2]L2 —, Notes on Affine Hecke Algebras, preprint, 1999.
- Lawrence Morris, Tamely ramified intertwining algebras, Invent. Math. 114 (1993), no. 1, 1–54. MR 1235019, DOI 10.1007/BF01232662
- I. G. Macdonald, Polynomial functors and wreath products, J. Pure Appl. Algebra 18 (1980), no. 2, 173–204. MR 585222, DOI 10.1016/0022-4049(80)90128-0
- Mark Reeder, $p$-adic Whittaker functions and vector bundles on flag manifolds, Compositio Math. 85 (1993), no. 1, 9–36. MR 1199202
- Mark Reeder, $p$-adic Whittaker functions and vector bundles on flag manifolds, Compositio Math. 85 (1993), no. 1, 9–36. MR 1199202
- Mark Reeder, Whittaker functions, prehomogeneous vector spaces and standard representations of $p$-adic groups, J. Reine Angew. Math. 450 (1994), 83–121. MR 1273956, DOI 10.1515/crll.1994.450.83
- Mark Reeder, Nonstandard intertwining operators and the structure of unramified principal series representations, Forum Math. 9 (1997), no. 4, 457–516. MR 1457135, DOI 10.1515/form.1997.9.457
- Alan Roche, Types and Hecke algebras for principal series representations of split reductive $p$-adic groups, Ann. Sci. École Norm. Sup. (4) 31 (1998), no. 3, 361–413 (English, with English and French summaries). MR 1621409, DOI 10.1016/S0012-9593(98)80139-0
- Franz Rádl, Über die Teilbarkeitsbedingungen bei den gewöhnlichen Differential polynomen, Math. Z. 45 (1939), 429–446 (German). MR 82, DOI 10.1007/BF01580293
- François Rodier, Whittaker models for admissible representations of reductive $p$-adic split groups, Harmonic analysis on homogeneous spaces (Proc. Sympos. Pure Math., Vol. XXVI, Williams Coll., Williamstown, Mass., 1972) Amer. Math. Soc., Providence, R.I., 1973, pp. 425–430. MR 0354942
- Jean-Pierre Serre, Local fields, Graduate Texts in Mathematics, vol. 67, Springer-Verlag, New York-Berlin, 1979. Translated from the French by Marvin Jay Greenberg. MR 554237, DOI 10.1007/978-1-4757-5673-9
- Freydoon Shahidi, A proof of Langlands’ conjecture on Plancherel measures; complementary series for $p$-adic groups, Ann. of Math. (2) 132 (1990), no. 2, 273–330. MR 1070599, DOI 10.2307/1971524
- T. A. Springer, Reductive groups, Automorphic forms, representations and $L$-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977) Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I., 1979, pp. 3–27. MR 546587, DOI 10.1090/pspum/033.1/546587
- Robert Steinberg, Torsion in reductive groups, Advances in Math. 15 (1975), 63–92. MR 354892, DOI 10.1016/0001-8708(75)90125-5
Bibliographic Information
- Mark Reeder
- Affiliation: Department of Mathematics, Boston College, Chestnut Hill, Massachusetts 02467
- Email: reederma@bc.edu
- Received by editor(s): April 30, 2001
- Received by editor(s) in revised form: January 30, 2002
- Published electronically: July 16, 2002
- Additional Notes: This work was partially supported by the National Science Foundation
- © Copyright 2002 American Mathematical Society
- Journal: Represent. Theory 6 (2002), 101-126
- MSC (2000): Primary 22E50
- DOI: https://doi.org/10.1090/S1088-4165-02-00167-X
- MathSciNet review: 1915088