Admissible nilpotent orbits of real and $p$-adic split exceptional groups
HTML articles powered by AMS MathViewer
- by Monica Nevins PDF
- Represent. Theory 6 (2002), 160-189 Request permission
Abstract:
We determine the admissible nilpotent coadjoint orbits of real and $p$-adic split exceptional groups of types $G_2$, $F_4$, $E_6$ and $E_7$. We find that all Lusztig-Spaltenstein special orbits are admissible. Moreover, there exist non-special admissible orbits, corresponding to “completely odd” orbits in Lusztig’s special pieces. In addition, we determine the number of, and representatives for, the non-even nilpotent $p$-adic rational orbits of $G_2$, $F_4$ and $E_6$.References
- L. Auslander and B. Kostant, Quantization and representations of solvable Lie groups, Bull. Amer. Math. Soc. 73 (1967), 692–695. MR 241570, DOI 10.1090/S0002-9904-1967-11829-9
- Roger W. Carter, Simple groups of Lie type, Pure and Applied Mathematics, Vol. 28, John Wiley & Sons, London-New York-Sydney, 1972. MR 0407163
- David H. Collingwood and William M. McGovern, Nilpotent orbits in semisimple Lie algebras, Van Nostrand Reinhold Mathematics Series, Van Nostrand Reinhold Co., New York, 1993. MR 1251060
- JosĂ© MarĂa AncochĂ©a-BermĂşdez and Michel Goze, Classification des algèbres de Lie filiformes de dimension $8$, Arch. Math. (Basel) 50 (1988), no. 6, 511–525 (French). MR 948265, DOI 10.1007/BF01193621
- Michel Duflo, Construction de représentations unitaires d’un groupe de Lie, Harmonic analysis and group representations, Liguori, Naples, 1982, pp. 129–221 (French, with English summary). MR 777341
- Gordon Bradley Elkington, Centralizers of unipotent elements in semisimple algebraic groups, J. Algebra 23 (1972), 137–163. MR 308228, DOI 10.1016/0021-8693(72)90052-X
- William Fulton and Joe Harris, Representation theory, Graduate Texts in Mathematics, vol. 129, Springer-Verlag, New York, 1991. A first course; Readings in Mathematics. MR 1153249, DOI 10.1007/978-1-4612-0979-9
- Peter B. Gilkey and Gary M. Seitz, Some representations of exceptional Lie algebras, Geom. Dedicata 25 (1988), no. 1-3, 407–416. Geometries and groups (Noordwijkerhout, 1986). MR 925845, DOI 10.1007/BF00191935
- A. A. Kirillov, Unitary representations of nilpotent Lie groups, Uspehi Mat. Nauk 17 (1962), no. 4 (106), 57–110 (Russian). MR 0142001, DOI 10.1070/RM1962v017n04ABEH004118
- Martin Kneser, Galois-Kohomologie halbeinfacher algebraischer Gruppen über ${\mathfrak {p}}$-adischen Körpern. I, Math. Z. 88 (1965), 40–47 (German). MR 174559, DOI 10.1007/BF01112691
- Martin Kneser, Galois-Kohomologie halbeinfacher algebraischer Gruppen über ${\mathfrak {p}}$-adischen Körpern. II, Math. Z. 89 (1965), 250–272 (German). MR 188219, DOI 10.1007/BF02116869
- M. Kneser, Lectures on Galois cohomology of classical groups, Tata Institute of Fundamental Research Lectures on Mathematics, No. 47, Tata Institute of Fundamental Research, Bombay, 1969. With an appendix by T. A. Springer; Notes by P. Jothilingam. MR 0340440
- Hanspeter Kraft and Claudio Procesi, A special decomposition of the nilpotent cone of a classical Lie algebra, Astérisque 173-174 (1989), 10, 271–279. Orbites unipotentes et représentations, III. MR 1021514
- Martin W. Liebeck and Gary M. Seitz, Reductive subgroups of exceptional algebraic groups, Mem. Amer. Math. Soc. 121 (1996), no. 580, vi+111. MR 1329942, DOI 10.1090/memo/0580
- Gérard Lion and Patrice Perrin, Extension des représentations de groupes unipotents $p$-adiques. Calculs d’obstructions, Noncommutative harmonic analysis and Lie groups (Marseille, 1980) Lecture Notes in Math., vol. 880, Springer, Berlin-New York, 1981, pp. 337–356 (French). MR 644839, DOI 10.1007/BFb0090415
- Gérard Lion and Michèle Vergne, The Weil representation, Maslov index and theta series, Progress in Mathematics, vol. 6, Birkhäuser, Boston, Mass., 1980. MR 573448, DOI 10.1016/0012-365x(79)90168-7
- G. Lusztig, A class of irreducible representations of a Weyl group, Nederl. Akad. Wetensch. Indag. Math. 41 (1979), no. 3, 323–335. MR 546372, DOI 10.1016/1385-7258(79)90036-2
- G. Lusztig, Notes on unipotent classes, Asian J. Math. 1 (1997), no. 1, 194–207. MR 1480994, DOI 10.4310/AJM.1997.v1.n1.a7 [M]MatLab MATLAB$^{\circledR }$ software by The MathWorks, http://www.mathworks.com.
- Colette Mœglin, Marie-France Vignéras, and Jean-Loup Waldspurger, Correspondances de Howe sur un corps $p$-adique, Lecture Notes in Mathematics, vol. 1291, Springer-Verlag, Berlin, 1987 (French). MR 1041060, DOI 10.1007/BFb0082712
- Calvin C. Moore, Decomposition of unitary representations defined by discrete subgroups of nilpotent groups, Ann. of Math. (2) 82 (1965), 146–182. MR 181701, DOI 10.2307/1970567
- Calvin C. Moore, Group extensions of $p$-adic and adelic linear groups, Inst. Hautes Études Sci. Publ. Math. 35 (1968), 157–222. MR 244258, DOI 10.1007/BF02698923
- JĂĽrgen Neukirch, Class field theory, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 280, Springer-Verlag, Berlin, 1986. MR 819231, DOI 10.1007/978-3-642-82465-4 [N1]Nthesis Monica Nevins, Ph.D. Thesis, MIT.
- Monica Nevins, Admissible nilpotent coadjoint orbits of $p$-adic reductive Lie groups, Represent. Theory 3 (1999), 105–126. MR 1698202, DOI 10.1090/S1088-4165-99-00072-2 [No1]Noel1 Alfred G. Noël, “Classification of admissible nilpotent orbits in simple exceptional real Lie algebras of inner type,” Represent. Theory 5 (2001), 455-493. [No2]Noel2 —, “Classification of admissible nilpotent orbits in simple real Lie algebras $E_{6(6)}$ and $E_{6(-26)}$,” Represent. Theory 5 (2001), 494-502.
- Takuya Ohta, Classification of admissible nilpotent orbits in the classical real Lie algebras, J. Algebra 136 (1991), no. 2, 290–333. MR 1089302, DOI 10.1016/0021-8693(91)90049-E
- Patrice Perrin, Représentations de Schrödinger, indice de Maslov et groupe metaplectique, Noncommutative harmonic analysis and Lie groups (Marseille, 1980) Lecture Notes in Math., vol. 880, Springer, Berlin-New York, 1981, pp. 370–407 (French). MR 644841, DOI 10.1007/BFb0090417
- R. Ranga Rao, On some explicit formulas in the theory of Weil representation, Pacific J. Math. 157 (1993), no. 2, 335–371. MR 1197062, DOI 10.2140/pjm.1993.157.335 [Sch]Schwarz James O. Schwarz, “The Determination of the Admissible Nilpotent Orbits in Real Classical Groups,” Ph.D. thesis, MIT, 1987.
- Jean-Pierre Serre, Cohomologie galoisienne, 5th ed., Lecture Notes in Mathematics, vol. 5, Springer-Verlag, Berlin, 1994 (French). MR 1324577, DOI 10.1007/BFb0108758
- M. M. Kapranov, Veronese curves and Grothendieck-Knudsen moduli space $\overline M_{0,n}$, J. Algebraic Geom. 2 (1993), no. 2, 239–262. MR 1203685, DOI 10.1007/BFb0096302
- J. Tits, Classification of algebraic semisimple groups, Algebraic Groups and Discontinuous Subgroups (Proc. Sympos. Pure Math., Boulder, Colo., 1965) Amer. Math. Soc., Providence, R.I., 1966, pp. 33–62. MR 0224710, DOI 10.1090/pspum/009/0224710
- J. Tits, Représentations linéaires irréductibles d’un groupe réductif sur un corps quelconque, J. Reine Angew. Math. 247 (1971), 196–220 (French). MR 277536, DOI 10.1515/crll.1971.247.196
- David A. Vogan Jr., Unitary representations of reductive Lie groups, Annals of Mathematics Studies, vol. 118, Princeton University Press, Princeton, NJ, 1987. MR 908078, DOI 10.1515/9781400882380
- David A. Vogan Jr., The method of coadjoint orbits for real reductive groups, Representation theory of Lie groups (Park City, UT, 1998) IAS/Park City Math. Ser., vol. 8, Amer. Math. Soc., Providence, RI, 2000, pp. 179–238. MR 1737729, DOI 10.1090/pcms/008/05
- André Weil, Sur certains groupes d’opérateurs unitaires, Acta Math. 111 (1964), 143–211 (French). MR 165033, DOI 10.1007/BF02391012
Additional Information
- Monica Nevins
- Affiliation: Department of Mathematics and Statistics, University of Ottawa, Ontario, Canada K1N 6N5
- Email: mnevins@uottawa.ca
- Received by editor(s): July 13, 2001
- Received by editor(s) in revised form: April 16, 2002
- Published electronically: August 7, 2002
- Additional Notes: The author was supported in part by the Killam Trust, and by NSERC of Canada grant RGPIN229816.
- © Copyright 2002 American Mathematical Society
- Journal: Represent. Theory 6 (2002), 160-189
- MSC (2000): Primary 20G25; Secondary 17B20, 17B45
- DOI: https://doi.org/10.1090/S1088-4165-02-00134-6
- MathSciNet review: 1915090