## Classification of unipotent representations of simple $p$-adic groups, II

HTML articles powered by AMS MathViewer

- by G. Lusztig
- Represent. Theory
**6**(2002), 243-289 - DOI: https://doi.org/10.1090/S1088-4165-02-00173-5
- Published electronically: September 10, 2002
- PDF | Request permission

## Abstract:

Let $\mathbf G(\mathbf K)$ be the group of $\mathbf K$-rational points of a connected adjoint simple algebraic group over a nonarchimedean local field $\mathbf K$. In this paper we classify the unipotent representations of $\mathbf G(\mathbf K)$ in terms of the geometry of the Langlands dual group. This was known earlier in the special case where $\mathbf G(\mathbf K)$ is an inner form of a split group.## References

- V. G. Kac,
*Automorphisms of finite order of semisimple Lie algebras*, Funkcional. Anal. i Priložen.**3**(1969), no. 3, 94–96 (Russian). MR**0251091**, DOI 10.1007/BF01676631 - David Kazhdan and George Lusztig,
*Proof of the Deligne-Langlands conjecture for Hecke algebras*, Invent. Math.**87**(1987), no. 1, 153–215. MR**862716**, DOI 10.1007/BF01389157 - George Lusztig,
*Cuspidal local systems and graded Hecke algebras. I*, Inst. Hautes Études Sci. Publ. Math.**67**(1988), 145–202. MR**972345**, DOI 10.1007/BF02699129 - George Lusztig,
*Affine Hecke algebras and their graded version*, J. Amer. Math. Soc.**2**(1989), no. 3, 599–635. MR**991016**, DOI 10.1090/S0894-0347-1989-0991016-9 - George Lusztig,
*Cuspidal local systems and graded Hecke algebras. II*, Representations of groups (Banff, AB, 1994) CMS Conf. Proc., vol. 16, Amer. Math. Soc., Providence, RI, 1995, pp. 217–275. With errata for Part I [Inst. Hautes Études Sci. Publ. Math. No. 67 (1988), 145–202; MR0972345 (90e:22029)]. MR**1357201**, DOI 10.1090/S1088-4165-02-00172-3 - George Lusztig,
*Classification of unipotent representations of simple $p$-adic groups*, Internat. Math. Res. Notices**11**(1995), 517–589. MR**1369407**, DOI 10.1155/S1073792895000353
[L5]TE G. Lusztig, - Mark Reeder,
*Formal degrees and $L$-packets of unipotent discrete series representations of exceptional $p$-adic groups*, J. Reine Angew. Math.**520**(2000), 37–93. With an appendix by Frank Lübeck. MR**1748271**, DOI 10.1515/crll.2000.023 - Graeme Segal,
*The representation ring of a compact Lie group*, Inst. Hautes Études Sci. Publ. Math.**34**(1968), 113–128. MR**248277**, DOI 10.1007/BF02684592 - Robert Steinberg,
*Endomorphisms of linear algebraic groups*, Memoirs of the American Mathematical Society, No. 80, American Mathematical Society, Providence, R.I., 1968. MR**0230728**, DOI 10.1090/memo/0080 - J. Tits,
*Reductive groups over local fields*, Automorphic forms, representations and $L$-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977) Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I., 1979, pp. 29–69. MR**546588**, DOI 10.1090/pspum/033.1/546588
[W]WA J.-L. Waldspurger,

*Cuspidal local systems and graded Hecke algebras*, III, Represent. Theory

**6**(2002), 202-242.

*Représentations de réduction unipotente pour $SO(2n+1)$: quelques conséquences d’un article de Lusztig*, 2001, preprint.

## Bibliographic Information

**G. Lusztig**- Affiliation: Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
- MR Author ID: 117100
- Email: gyuri@math.mit.edu
- Received by editor(s): November 28, 2001
- Received by editor(s) in revised form: May 3, 2002
- Published electronically: September 10, 2002
- Additional Notes: Supported in part by the National Science Foundation. This paper was written while the author enjoyed the hospitality of the Institut des Hautes Études Scientifiques
- © Copyright 2002 American Mathematical Society
- Journal: Represent. Theory
**6**(2002), 243-289 - MSC (2000): Primary 22E50
- DOI: https://doi.org/10.1090/S1088-4165-02-00173-5
- MathSciNet review: 1927955