Classification of unipotent representations of simple $p$-adic groups, II
HTML articles powered by AMS MathViewer
- by G. Lusztig
- Represent. Theory 6 (2002), 243-289
- DOI: https://doi.org/10.1090/S1088-4165-02-00173-5
- Published electronically: September 10, 2002
- PDF | Request permission
Abstract:
Let $\mathbf G(\mathbf K)$ be the group of $\mathbf K$-rational points of a connected adjoint simple algebraic group over a nonarchimedean local field $\mathbf K$. In this paper we classify the unipotent representations of $\mathbf G(\mathbf K)$ in terms of the geometry of the Langlands dual group. This was known earlier in the special case where $\mathbf G(\mathbf K)$ is an inner form of a split group.References
- V. G. Kac, Automorphisms of finite order of semisimple Lie algebras, Funkcional. Anal. i Priložen. 3 (1969), no. 3, 94–96 (Russian). MR 0251091, DOI 10.1007/BF01676631
- David Kazhdan and George Lusztig, Proof of the Deligne-Langlands conjecture for Hecke algebras, Invent. Math. 87 (1987), no. 1, 153–215. MR 862716, DOI 10.1007/BF01389157
- George Lusztig, Cuspidal local systems and graded Hecke algebras. I, Inst. Hautes Études Sci. Publ. Math. 67 (1988), 145–202. MR 972345, DOI 10.1007/BF02699129
- George Lusztig, Affine Hecke algebras and their graded version, J. Amer. Math. Soc. 2 (1989), no. 3, 599–635. MR 991016, DOI 10.1090/S0894-0347-1989-0991016-9
- George Lusztig, Cuspidal local systems and graded Hecke algebras. II, Representations of groups (Banff, AB, 1994) CMS Conf. Proc., vol. 16, Amer. Math. Soc., Providence, RI, 1995, pp. 217–275. With errata for Part I [Inst. Hautes Études Sci. Publ. Math. No. 67 (1988), 145–202; MR0972345 (90e:22029)]. MR 1357201, DOI 10.1090/S1088-4165-02-00172-3
- George Lusztig, Classification of unipotent representations of simple $p$-adic groups, Internat. Math. Res. Notices 11 (1995), 517–589. MR 1369407, DOI 10.1155/S1073792895000353 [L5]TE G. Lusztig, Cuspidal local systems and graded Hecke algebras, III, Represent. Theory 6 (2002), 202-242.
- Mark Reeder, Formal degrees and $L$-packets of unipotent discrete series representations of exceptional $p$-adic groups, J. Reine Angew. Math. 520 (2000), 37–93. With an appendix by Frank Lübeck. MR 1748271, DOI 10.1515/crll.2000.023
- Graeme Segal, The representation ring of a compact Lie group, Inst. Hautes Études Sci. Publ. Math. 34 (1968), 113–128. MR 248277, DOI 10.1007/BF02684592
- Robert Steinberg, Endomorphisms of linear algebraic groups, Memoirs of the American Mathematical Society, No. 80, American Mathematical Society, Providence, R.I., 1968. MR 0230728, DOI 10.1090/memo/0080
- J. Tits, Reductive groups over local fields, Automorphic forms, representations and $L$-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977) Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I., 1979, pp. 29–69. MR 546588, DOI 10.1090/pspum/033.1/546588 [W]WA J.-L. Waldspurger, Représentations de réduction unipotente pour $SO(2n+1)$: quelques conséquences d’un article de Lusztig, 2001, preprint.
Bibliographic Information
- G. Lusztig
- Affiliation: Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
- MR Author ID: 117100
- Email: gyuri@math.mit.edu
- Received by editor(s): November 28, 2001
- Received by editor(s) in revised form: May 3, 2002
- Published electronically: September 10, 2002
- Additional Notes: Supported in part by the National Science Foundation. This paper was written while the author enjoyed the hospitality of the Institut des Hautes Études Scientifiques
- © Copyright 2002 American Mathematical Society
- Journal: Represent. Theory 6 (2002), 243-289
- MSC (2000): Primary 22E50
- DOI: https://doi.org/10.1090/S1088-4165-02-00173-5
- MathSciNet review: 1927955