Some closed formulas for canonical bases of Fock spaces
HTML articles powered by AMS MathViewer
- by Bernard Leclerc and Hyohe Miyachi
- Represent. Theory 6 (2002), 290-312
- DOI: https://doi.org/10.1090/S1088-4165-02-00136-X
- Published electronically: September 19, 2002
- PDF | Request permission
Abstract:
We give some closed formulas for certain vectors of the canonical bases of the Fock space representation of $U_v(\mathfrak {sl}_n)$. As a result, a combinatorial description of certain parabolic Kazhdan-Lusztig polynomials for affine type $A$ is obtained.References
- Susumu Ariki, On the decomposition numbers of the Hecke algebra of $G(m,1,n)$, J. Math. Kyoto Univ. 36 (1996), no. 4, 789–808. MR 1443748, DOI 10.1215/kjm/1250518452 [CK]CKJ. Chuang, R. Kessar, Symmetric groups, wreath products, Morita equivalences, and Broué’s abelian defect group conjecture, Bull. London Math. Soc. 34 (2002), 174–184. [CT]CTJ. Chuang, K. M. Tan, Some canonical basis vectors in the basic $U_q(\mathfrak {sl}_n)$-module, J. Algebra 248 (2002), 765–779.
- Richard Dipper and Gordon James, The $q$-Schur algebra, Proc. London Math. Soc. (3) 59 (1989), no. 1, 23–50. MR 997250, DOI 10.1112/plms/s3-59.1.23
- Takahiro Hayashi, $q$-analogues of Clifford and Weyl algebras—spinor and oscillator representations of quantum enveloping algebras, Comm. Math. Phys. 127 (1990), no. 1, 129–144. MR 1036118, DOI 10.1007/BF02096497 [HM]HMA. Hida, H. Miyachi, Module correspondences in some blocks of finite general linear groups, (2000), Preprint.
- Gordon James and Adalbert Kerber, The representation theory of the symmetric group, Encyclopedia of Mathematics and its Applications, vol. 16, Addison-Wesley Publishing Co., Reading, Mass., 1981. With a foreword by P. M. Cohn; With an introduction by Gilbert de B. Robinson. MR 644144
- Gordon James and Andrew Mathas, Hecke algebras of type $\textbf {A}$ with $q=-1$, J. Algebra 184 (1996), no. 1, 102–158. MR 1402572, DOI 10.1006/jabr.1996.0251
- Michio Jimbo and Tetsuji Miwa, Solitons and infinite-dimensional Lie algebras, Publ. Res. Inst. Math. Sci. 19 (1983), no. 3, 943–1001. MR 723457, DOI 10.2977/prims/1195182017
- Thomas Jost, Morita equivalence for blocks of Hecke algebras of symmetric groups, J. Algebra 194 (1997), no. 1, 201–223. MR 1461487, DOI 10.1006/jabr.1996.6988
- Thomas Jost, Morita equivalence for blocks of finite general linear groups, Manuscripta Math. 91 (1996), no. 1, 121–144. MR 1404422, DOI 10.1007/BF02567944
- Victor G. Kac, Infinite-dimensional Lie algebras, 3rd ed., Cambridge University Press, Cambridge, 1990. MR 1104219, DOI 10.1017/CBO9780511626234
- Masaki Kashiwara, Crystalizing the $q$-analogue of universal enveloping algebras, Comm. Math. Phys. 133 (1990), no. 2, 249–260. MR 1090425, DOI 10.1007/BF02097367
- M. Kashiwara, On crystal bases of the $Q$-analogue of universal enveloping algebras, Duke Math. J. 63 (1991), no. 2, 465–516. MR 1115118, DOI 10.1215/S0012-7094-91-06321-0
- Masaki Kashiwara, Global crystal bases of quantum groups, Duke Math. J. 69 (1993), no. 2, 455–485. MR 1203234, DOI 10.1215/S0012-7094-93-06920-7
- M. Kashiwara, T. Miwa, and E. Stern, Decomposition of $q$-deformed Fock spaces, Selecta Math. (N.S.) 1 (1995), no. 4, 787–805. MR 1383585, DOI 10.1007/BF01587910 [KT]KTM. Kashiwara, T. Tanisaki, Parabolic Kazhdan-Lusztig polynomials and Schubert varieties, J. Algebra 249 (2002), 306–325.
- Donald Knutson, $\lambda$-rings and the representation theory of the symmetric group, Lecture Notes in Mathematics, Vol. 308, Springer-Verlag, Berlin-New York, 1973. MR 0364425, DOI 10.1007/BFb0069217
- Alain Lascoux, Bernard Leclerc, and Jean-Yves Thibon, Hecke algebras at roots of unity and crystal bases of quantum affine algebras, Comm. Math. Phys. 181 (1996), no. 1, 205–263. MR 1410572, DOI 10.1007/BF02101678
- Alain Lascoux, Bernard Leclerc, and Jean-Yves Thibon, Ribbon tableaux, Hall-Littlewood functions, quantum affine algebras, and unipotent varieties, J. Math. Phys. 38 (1997), no. 2, 1041–1068. MR 1434225, DOI 10.1063/1.531807
- Bernard Leclerc and Séverine Leidwanger, Schur functions and affine Lie algebras, J. Algebra 210 (1998), no. 1, 103–144. MR 1656417, DOI 10.1006/jabr.1998.7453
- Bernard Leclerc and Jean-Yves Thibon, Canonical bases of $q$-deformed Fock spaces, Internat. Math. Res. Notices 9 (1996), 447–456. MR 1399410, DOI 10.1155/S1073792896000293 [LT2]LT2B. Leclerc, J.-Y. Thibon, Littlewood-Richardson coefficients and Kazhdan-Lusztig polynomials, in Combinatorial methods in representation theory, Ed. M. Kashiwara et al., Adv. Stud. Pure Math. 28 (2000), 155–220.
- Séverine Leidwanger, Basic representations of $A^{(1)}_{n-1}$ and $A^{(2)}_{2n}$ and the combinatorics of partitions, Adv. Math. 141 (1999), no. 1, 119–154. MR 1667148, DOI 10.1006/aima.1998.1781
- G. Lusztig, Canonical bases arising from quantized enveloping algebras, J. Amer. Math. Soc. 3 (1990), no. 2, 447–498. MR 1035415, DOI 10.1090/S0894-0347-1990-1035415-6
- I. G. Macdonald, Symmetric functions and Hall polynomials, 2nd ed., Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1995. With contributions by A. Zelevinsky; Oxford Science Publications. MR 1354144 [Mi]MiH. Miyachi, Some remarks on James’ conjecture, (2001), Preprint.
- Kailash Misra and Tetsuji Miwa, Crystal base for the basic representation of $U_q(\mathfrak {s}\mathfrak {l}(n))$, Comm. Math. Phys. 134 (1990), no. 1, 79–88. MR 1079801, DOI 10.1007/BF02102090 [R]RR. Rouquier, Représentations et catégories dérivées, Rapport d’habilitation, 1998.
- Joanna Scopes, Cartan matrices and Morita equivalence for blocks of the symmetric groups, J. Algebra 142 (1991), no. 2, 441–455. MR 1127075, DOI 10.1016/0021-8693(91)90319-4
- Dennis W. Stanton and Dennis E. White, A Schensted algorithm for rim hook tableaux, J. Combin. Theory Ser. A 40 (1985), no. 2, 211–247. MR 814412, DOI 10.1016/0097-3165(85)90088-3
- Eugene Stern, Semi-infinite wedges and vertex operators, Internat. Math. Res. Notices 4 (1995), 201–219. MR 1326065, DOI 10.1155/S107379289500016X
- Michela Varagnolo and Eric Vasserot, On the decomposition matrices of the quantized Schur algebra, Duke Math. J. 100 (1999), no. 2, 267–297. MR 1722955, DOI 10.1215/S0012-7094-99-10010-X
Bibliographic Information
- Bernard Leclerc
- Affiliation: Département de Mathématiques, Université de Caen, Campus II, Bld Maréchal Juin, BP 5186, 14032 Caen Cedex, France
- MR Author ID: 327337
- Email: leclerc@math.unicaen.fr
- Hyohe Miyachi
- Affiliation: Department of Mathematics, Graduate School of Science and Technology, Chiba University, Yayoi-cho, Chiba 263-8522, Japan
- Address at time of publication: IHES, Le Bois-Marie, 35, route de Chartres, F-91440 Bures-sur-Yvette, France
- MR Author ID: 649846
- Email: miyachi@ihes.fr; mihachi_hyohe@ma.noda.tus.ac.jp
- Received by editor(s): September 6, 2001
- Received by editor(s) in revised form: June 19, 2002
- Published electronically: September 19, 2002
- © Copyright 2002 American Mathematical Society
- Journal: Represent. Theory 6 (2002), 290-312
- MSC (2000): Primary 17B37, 05E05, 05E10, 20C20, 20C33
- DOI: https://doi.org/10.1090/S1088-4165-02-00136-X
- MathSciNet review: 1927956