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THE BERNSTEIN CENTER IN TERMS OF INVARIANT
LOCALLY INTEGRABLE FUNCTIONS

ALLEN MOY AND MARKO TADIĆ

Abstract. We give a description of the Bernstein center of a reductive p-adic
group G in terms of invariant locally integrable functions and compute a basis
of these functions for the group SL(2).

1. Introduction

1.1. The Lie algebra g and associated enveloping algebra U(g) of a connected Lie
group G are fundamental tools in the study of the group’s representations. The
center Z(U(g)) of the enveloping algebra is particularly useful for a number of pur-
poses. There are three useful descriptions of the center: (i) an algebraic description
of the center in terms of the Lie algebra, (ii) the Harish-Chandra homomorphism
identification of the center with the space of Weyl invariant regular functions on
the symmetric algebra of a Cartan subalgebra, and (iii) as invariant distributions
on the group supported at the identity.

1.2. By following J. Bernstein, one can also consider the center Z(U(g)) from a ring
and categorical point of view. If A is an algebra with identity, then the center of A
is naturally isomorphic to the algebra of endomorphisms of the identity functor of
the category of all A-modules. In particular, Z(U(g)) is isomorphic to the algebra
of endomorphisms of the identity functor of the category of modules of the Lie
algebra. This formulation of the center of the enveloping algebra is the starting
point for Bernstein’s construction of an analogue of the center of the enveloping
algebra for reductive p-adic groups. If G is a reductive p-adic group G, let S(G)
denote the category of smooth representations of G. The Bernstein center Z(G) of
G is defined to be the algebra of endomorphisms of the identity functor of S(G)
There are two realizations of Bernstein center. Both are much less concrete than
in the real case.

(i) The most explicit description of the Bernstein center of G is in terms of
algebraic geometry. Let G̃ denote the non-unitary dual of G, the set of all
equivalence classes of smooth irreducible representations. It carries a nat-
ural topology (see [T]). Let Ω(G) denote the Hausdorffization of G̃. The
natural algebraic group structure which exists on characters of Levi sub-
groups of G, defines an algebraic variety structure on Ω(G). The Bernstein
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center is the algebra of regular functions on Ω(G). As a direct consequence
of this description, we define a family of ideals Z(Ω) in Z(G), indexed by
connected components Ω of Ω(G), as follows: Define

Z(Ω) := the regular functions on Ω(G)
supported on the connected component Ω.

(1.2.1)

It is obvious from (1.1) that Z(Ω) is a direct summand in Z(G). Further-
more, multiplication by the function on Ω(G) which is the characteristic
function of Ω defines a projection map z 7→ zΩ from Z(G) to Z(Ω).

(ii) A second description of the Bernstein center of G is in terms of distribu-
tions. An element of the Bernstein center is a G-invariant distribution D on
G which is essentially compact; i.e., convolution of D against a compactly
supported locally constant function f on G results in a compactly sup-
ported locally constant function on G. The relationship between viewing
an element of the Bernstein center as a G-invariant essentially compact dis-
tribution D and as a regular function on Ω(G) is Fourier Transform. More
precisely, the Fourier Transform of D is a scalar operator at each point of
Ω(G) (see (2.3.2)). The delta distribution supported at the identity is an
example of a G-invariant essentially compact distribution from which we see
that distributions in the Bernstein center are, in general, not represented
by locally integrable functions on the group. It is a nontrivial task to find
other distributions in the Bernstein center and it is an interesting question
of how to find sufficient conditions for a distribution in the Bernstein center
to be representable by a locally integrable function on the group.

1.3. One of our main goals (Theorem 2.5) is to show the family of ideals Z(Ω) in
Z(G), indexed by connected components of Ω of Ω(G), satisfy the properties:

(i) Each distribution in Z(Ω) is represented by a locally integrable function on
G.

(ii) Suppose f is a locally constant compactly supported function on G. Then
zΩ(f) 6= 0 for only finitely many connected components Ω of Ω(G). In
particular, for an arbitrary family zΩ ∈ Z(Ω), the sum

∑
Ω zΩ is a well-

defined distribution lying in Z(G).
(iii) Each distribution in z ∈ Z(Ω) can be represented as in (iii) by a unique

family zΩ, Ω ⊆ Ω(G).
We obtain in this fashion a description of the entire Bernstein center completely in
terms of distributions represented by locally integrable functions.

1.4. As a consequence of our description of the Bernstein center in terms of lo-
cally integrable functions, for the special linear group SL(2), we explicitly compute
locally integrable functions which describe elements in Z(Ω).

1.5. This paper is organized as follows: In section two we introduce notation,
and show in terms of invariant distributions, the ideals Z(Ω) satisfy (i), (ii), and
(iii). For a fixed connect component Ω ⊂ Ω(G), properties (i), and (ii) imply the
existence of a projector function eΩ ∈ Z(Ω) such that for any z ∈ Z(G) we have
zΩ = z ? eΩ. Equivalently, eΩ is the G-invariant essentially compact distribution
whose Fourier Transform is the characteristic function of Ω. In section three we
explicitly compute the functions eΩ when G = SL(2, F ).
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2. On local integrability of elements from the Bernstein center

In this section, we obtain a description of the Bernstein center in terms of locally
integrable functions.

2.1. Notation and Plancherel formula.

2.1.1. Let F denote a non-archimedean local field. Let | |F denote the modulus
character of F . Let G denote the group of F -rational points of a connected reductive
group defined over F . In the sequel, all algebraic subgroups of G will be the F -
rational points of an algebraic subgroup defined over F .

2.1.2. Suppose π is an admissible representation of G. Let Θπ denote its character.
We assume char (F ) = 0 in the sequel. Under this assumption, Harish-Chandra
showed in [HC2] that the distribution Θπ is given by a locally integrable function,
which is locally constant on regular semisimple elements. We follow the usual
convention and denote the locally integrable function also as Θπ. If f is a function
on G, then we define f̌ on G by f̌(g) = f(g−1).

2.1.3. We establish notation for the unramified characters of G. Set
G0 := {g ∈ G | |χ(g)|F = 1 for all rational characters of G},

Λ(G) := G/G0.

The group Λ(G) is a free abelian of rank r equal to the rank of a maximal split
torus in the center of G. A character of G is unramified if it is trivial on G0. Let
Ψ(G) denote the commutative group of unramified characters. Clearly, Ψ(G) ∼=
HomZ(Λ(G),C×). In particular, Ψ(G) has the structure of a complex algebraic
group (isomorphic to (C×)r). Let Ψu(G) denote the subgroup of unitary characters
in Ψ(G).

2.1.4. Let G̃ ⊃ Ĝ denote respectively the smooth and unitary dual of G. For π ∈ G̃
set

Stab(π) := { χ ∈ Ψ(G) | π ∼= χπ }.
Then, Stab(π) is a finite group, hence contained in Ψu(G), and χStab(π) 7→ χπ is
a one-to-one mapping of Ψ(G)/Stab(π) onto Ψ(G)π ⊆ G̃.

2.1.5. Next, we recall notation for parabolic subgroups and roots. We fix a minimal
parabolic subgroup P0 (with radical U) of G and a Levi factor M0 of P0 so P0 =
M0U . A parabolic subgroup P ⊃ P0 is called standard (with respect to P0). For
such a parabolic subgroup P , there is a unique Levi factor M ⊃M0. Let N denote
the unipotent radical of P . The standard Levi decomposition of P is P = MN .
We shall assume all Levi decompositions of standard parabolic subgroups are of
this type. Let AM denote the maximal split torus in the center of M and set
WM := NG(AM )/M = NG(M)/ZG(AM ), where NG(AM ) (resp. ZG(AM )) denotes
the normalizer (resp. the centralizer) of AM in G. Let |WM | be the cardinal number
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of WM . For convenience, we shorten AM0 to A0 and WM0 to W . Denote as Σ the
set of roots of A0 in G. Let Σ+ ⊂ Σ (resp. ∆ ⊂ Σ+) denote the set of positive
(resp. simple) roots determined by the selection of the minimal parabolic P0. There
is a bijection between subsets of ∆ and standard parabolic subgroups of G. For
Φ ⊆ ∆, let PΦ = MΦNΦ denote the corresponding standard parabolic subgroup
(note that P∅ = P0 and M∅ = M0). Define W (Φ) := {w ∈W |w(Φ) = Φ }.

2.1.6. Fix a maximal special parahoric subgroupK0 of G, which is in a good relative
position with M0 (see [W] for a precise description of K0). A simple description
of K0 can also be formulated using affine buildings as follows. Let B(G) ⊃ B(M0)
denote the extended affine buildings of G and M0 respectively. The group K0 is
then a parahoric subgroup associated to any special point x of B(G) which lies in
B(M0).

If S is a closed subgroup of G and ds a Haar measure on S (left or right), then
we shall always assume that it is normalized so the measure of S ∩K0 is one. We
now recall the definition [HC1] of Harish-Chandra’s γ and c-factors. For P = MN
a parabolic subgroup, let P̄ (resp. N̄) denote the opposite parabolic subgroup (with
respect to M) (resp. the unipotent radical of P̄ ). Let dn̄ denote the Haar measure
on N̄ . Extend the modular function δP of P to a function δ′P on all G by the
decomposition G = PK0 (i.e., δ′P (pk) = δP (p) for p ∈ P and k ∈ K0). Then
Harish-Chandra’s γ-factor γ(G|M) is defined as

(2.1.7) γ(G|M) =
∫
N̄

δ′P (n̄) dn̄ .

To define Harish-Chandra’s c-factor c(G|M), let α be a reduced root of AM in
G. Define Aα to be the connected component of the kernel of α (in AM ), and set
Mα equal to the centralizer of Aα in G. Then Mα ⊃M is a Levi subgroup in G and
Mα ∩ K0 is a maximal compact subgroup of Mα. We define γ(Mα|M) as above.
Then

(2.1.8) c(G|M) := γ(G|M)−1
∏

γ(Mα|M),

where the product runs over all reduced roots of A0 in P .

2.1.9. For a smooth representation σ of the Levi factor M of a standard parabolic
subgroup P = MN of G, let IndGP (σ) denote the normalized induced representation
under right translations. We recall the formula [vD] for ΘIndGP (π), the induced
character. Let H be a Cartan subgroup of G; i.e, H is the F -rational points of a
maximal F -rational torus of the algebraic group associated to G.

Let DG : G −→ F denote the Weyl discriminant. In particular, the set of regular
elements G′ of G are those γ ∈ G satisfying DG(γ) 6= 0. Suppose γ ∈ H ∩G′. If H
is not G-conjugate to a subgroup of M , then ΘIndGP (π)(γ) = 0. Otherwise we can
assume γ and H belong to M . In this case, let AH denote the maximal F -split
part of H , and let W (AM , AH) be the set of embeddings s : AM −→ AH with the
property that each embedding s can be realized as s(a) = hah−1 for some h ∈ G.
For s ∈W (AM , AH) let s π denote the representation of M s := Ad(h)M = hMh−1

defined by (s, π)(m) = π(h−1mh). Then [vD, Theorem 3]

(2.1.10) ΘIndGP (π)(γ) =
∑

s∈W (AM ,AH)

Θsπ(γ)
|DMs(γ)|1/2
|DG(γ)|1/2 .
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2.1.11. We now review Plancherel measures. Let M = MΦ be a standard Levi and σ
an irreducible square integrable modulo center representation ofMΦ and w ∈ W (Φ).
For w ∈ W denote Nw = N∅ ∩ wN̄Φw

−1, where N̄Φ is the opposite unipotent
radical of NΦ. Then there exists an open nonempty subset of unramified characters
χ of M such that the integral Aw(χσ) =

∫
Nw

f(w−1ng)dn converges for all f ∈
IndGPΦ

(χσ). The integral has a meromorphic continuation to the set of all unramified
characters. The operator Aw(χσ) intertwines IndGPΦ

(χσ) and IndGPΦ
(w(χσ)). Let

wΦ be the longest element in W (Φ) and let µ be the meromorphic function on
Ψ(M)σ satisfying

(2.1.12) AwΦ(χσ)Aw−1
Φ

(wΦ(χσ)) = µ(χσ)−1γ(G|MΦ)2 I .

On the right side, I is the identity operator. Then,

(2.1.13a) Plancherel measure µ := the restriction of µ to Ψu(M)σ .

Let E2(M) denote the square integrable modulo center classes in M̂ . For ω ∈ E2(M),
set

(2.1.13b) d(ω) := the formal degree of ω .

There is an obvious bijection of Ψu(M)/Stab(ω) with Ψu(M)ω ⊆ E2(M). Set

dω := measure on Ψu(M)ω transferred from the

normalized Haar measure on Ψu(M)/Stab(ω) .
(2.1.13c)

2.1.14. Let f be a function in Harish-Chandra’s Schwartz space of G. For our
purposes it is sufficient to take f ∈ C∞c (G). For a standard parabolic subgroup
P = MN set

(2.1.15) a(G|M) := c(G|M)−2γ(G|M)−1|WM |−1

and

fM (1) = a(G|M)
∫
E2(M)

trace(IndGP (ω)(f̌)) d(ω) µ(ω) dω

= a(G|M)
∫
E2(M)

ΘIndGP (ω)(f̌) d(ω) µ(ω) dω

= a(G|M)
∫
E2(M)

(∫
G

ΘIndGP (ω)(g)f(g−1)dg
)
d(ω) µ(ω) dω

= a(G|M)
∫
E2(M)

(∫
G

Θ̌IndGP (ω)(g)f(g)dg
)
d(ω) µ(ω) dω

(2.1.16)

(recall f̌(g) := f(g−1)). Harish-Chandra’s Plancherel Formula states that

(2.1.17) f(1) =
∑
M

fM (1),

where the sum runs over all Levi subgroups up to conjugacy.
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2.2. Bernstein center - distributions.

2.2.1. Define

Z(G) := { G-invariant distributions z | z ? f ∈ C∞c (G) for all f ∈ C∞c (G) }.

We remark, that given any f ∈ C∞c (G), there exists a small enough open compact
subgroup J so that f = chJ ? f = f ? chJ where chJ denotes the characteristic
function of J . If z is a distribution, then z ? f = z ? (chJ ? f) = (z ? chJ ) ? f .
In particular, in the definition of the space Z(G), it is sufficient to only require
that z ? chJ ∈ C∞c (G) for some system of neighborhoods of identity of compact
open subgroups J . Furthermore, if (π, Vπ) is a smooth representation of G, for any
v ∈ Vπ there is an open compact subgroup J which fixes v and π(z)v := π(z ?chJ) v
is well-defined; hence Z(G) acts in a natural way in each smooth representation.
In this way each z ∈ Z defines an endomorphism of the identity functor of the
category of smooth representations of G, i.e., an element of the Bernstein center.
Every element of the Bernstein center is obtained in this way.

2.2.2. Let z ∈ Z(G) and let (π, Vπ) be an irreducible smooth representation of G.
Schur’s lemma implies that π(z) is a scalar operator. More generally, when the
Bernstein center acts by scalars in a smooth representation π, we say that π has an
infinitesimal character. The corresponding homomorphism of the Bernstein center
is called the infinitesimal character of π and denoted as χπ.

2.3. Bernstein center - regular functions.

2.3.1. Consider pairs (M,ρ), where M is a Levi subgroup of G and ρ is an irre-
ducible cuspidal representation of M . Let [M,ρ]G denote the equivalence class of
(M,ρ) under the natural adjoint action of G and let Ω(G) denote the set of the
equivalence class of [M,ρ]G. For [M,ρ]G ∈ Ω(G), the set {[M,χρ]G|χ ∈ Ψ(M)}
is called a connected component in Ω(G) (of [M,ρ]G or sometimes by abuse of
notation of (M,ρ)). The map ψStab(ρ) 7→ [M,ψρ]G from Ψ(M)/Stab(ρ) to Ω(G)
has finite fibers, and allows one to define a complex algebraic variety structure on
the component Ω of Ω(G) containing [M,ρ]G. The set Ω(G) is a disjoint union of
connected components and so we view it as a complex algebraic variety also. If L
is a Levi subgroup of G, the mapping [H, ρ]L 7→ [H, ρ]G (H a Levi subgroup of L)
defines a morphism of algebraic varieties Ω(M)→ Ω(G), with finite fibers. Denote
this mapping by iGM . Denote the algebra of all regular functions on Ω(G) by Z(G)
and let Z(G)0 be the subalgebra of all regular functions supported on only finitely
many components. It is elementary that an infinitesimal character χ of Z(G) is
completely determined by its restriction to Z(G)0.

2.3.2. For π ∈ G̃ one can choose [M,ρ]G ∈ Ω(G) such that π is a subquotient of
IndGP (ρ), where P is a parabolic subgroup (of G) containing M as a Levi factor. The
equivalence class of [M,ρ]G ∈ Ω(G) is uniquely determined by π. Let Π

G
(π) :=

[M,ρ]G denote this class. The map ΠG : G̃ 7→ Ω(G) has finite fibers. If Ω is a
connected component of Ω(G), consider Π−1

G (Ω). Under a natural topology on G̃

(see [T]), this inverse image is a connected component of G̃. Each z ∈ Z(G) defines
a map ẑ : Ω(G) −→ C,

(2.3.3) ẑ([M,ρ]G) := χIndGP (ρ)(z) .
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Clearly, ẑ is the operator Fourier Transform, with the operator being a scalar. This
mapping is an isomorphism of Z(G) with Z(G) (see [BD]). Let Z(G)0 denote the
space of essentially compact distributions corresponding to elements in Z(G)0.

2.4. Bernstein center - inversion formula.

2.4.1. Let z ∈ Z(G) and ϕ ∈ C∞0 (G). For x ∈ G, let λxϕ (resp. ρxϕ) denote
left (resp. right) translation of the function ϕ by x; i.e., (λxϕ)(y) := ϕ(x−1y) and
(ρxϕ)(y) := ϕ(y). We recall that

(i) z ? ϕ(x) := z(λxϕ̌) (ϕ̌(g) := ϕ(g−1)),

(ii) ϕ ? z(x) := z(ρx−1ϕ̌),

(iii) z(ϕ) = (z ? ϕ̌)(1) = (ϕ̌ ? z)(1) .

(2.4.2)

For ease of notation, we shall abbreviate the induced representation IndGP (ω) to πω,
trace to tr and ẑ(iGM (Π

M
(ω))) to ẑ(ω). An application of the Plancherel formula

to z ? ϕ̌ ∈ C∞0 (G) gives

z(ϕ) = (z ? ϕ̌)(1) =
∑
M

(z ? ϕ̌)M (1)

=
∑
M

a(G|M)
∫
E2(M)

tr(πω(z ? ϕ̌)) d(ω) µ(ω) dω

=
∑
M

a(G|M)
∫
E2(M)

tr(πω(z) πω(ϕ̌)) d(ω) µ(ω) dω

=
∑
M

a(G|M)
∫
E2(M)

ẑ(ω) tr(πω(ϕ̌))d(ω)µ(ω) dω

=
∑
M

a(G|M)
∫
E2(M)

ẑ(ω)
(∫

G

ϕ(g)Θ̌πω (g)dg
)
d(ω) µ(ω) dω.

(2.4.3)

This is just the formula from Remark 2.17 in [BD].

2.5. Distributions in Z(G)0.

2.5.1. For each component Ω ⊆ Ω(G), let Z(Ω) denote the vector space of distri-
butions in Z(G) corresponding to regular functions (supported) on Ω. Then

Theorem 2.5. (i) Z(G)0 =
⊕

Ω⊆Ω(G)
Z(Ω).

(ii) Each distribution in Z(G)0 is given by an invariant locally integrable func-
tion. In particular, each distribution in Z(Ω) is given by an invariant locally
integrable function.

(iii) Suppose that we have a family zΩ ∈ Z(Ω), Ω ∈ Ω(G). Then for any ϕ ∈
C∞c (G), zΩ(ϕ) 6= 0 for only finitely many connected components Ω ⊆ Ω(G)
and

ϕ 7→
∑

Ω⊆Ω(G)

zΩ(ϕ)

defines an invariant distribution. This distribution lies in Z(G).
(iv) Any distribution in Z(G) can be presented in the same way as above, and

the presentation above is unique.
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Thus, to understand Z(G), it is enough to understand Z(G)0. By the above
theorem, elements of the algebra Z(G)0 are given by invariant locally integrable
functions.

Proof. Assertion (i) is obvious from the definitions of Z(G)0, Z(Ω) and, the corre-
sponding fact for Z(G)0.

To prove statement (ii), we make the obvious reduction to the situation z ∈ Z(Ω),
where Ω is a connected component of Ω(G). We recall again the mapping iGM :
Ω(M) → Ω(G) has finite fibers. We also recall that each irreducible essentially
square integrable representation of M is elliptic; this follows, for example, from the
orthogonality relations among characters (see [K]). It follows that its infinitesimal
character is discrete (with respect to M) in the sense of 3.1 of [BDK]. Recall that
there is only finitely many Ψ(M)-orbits of discrete characters by Proposition 3.1 of
[BDK]. From this it easily follows that one can find only finitely many irreducible
square integrable representations ωi of Mi, i = 1, . . . , n, such that each irreducible
essentially square integrable representation of any Levi subgroup M ′ of G, whose
infinitesimal character after induction lies in Ω, is contained in

⋃n
i=1 Ψ(Mi)ωi.

Considering central characters, we see that all irreducible square integrable repre-
sentations of Levi subgroups M ′ of G, whose infinitesimal characters after induction
lie in Ω, are contained in

⋃n
i=1 Ψu(Mi)ωi. For each i ∈ {1, . . . , n} fix a parabolic

subgroup Pi such that Mi is a Levi factor of Pi. Now the inversion formula (2.4.3)
for the Bernstein center for z ∈ Z(Ω) gives

(2.5.2) z(ϕ) =
n∑
i=1

a(G|Mi)
∫

Ψ(Mi)u ωi

ẑ(ω)
(∫

G

ϕ(g) Θ̌πω(g) dg
)
µ(ω) d(ω) dω.

(Recall ẑ(ω) = ẑ(iGMi(ΠMi
(ω))) and πω = IndGPi(ω).) Fix i ∈ {1, . . . , n}. We know

that µ is a continuous nonnegative function on Ψ(Mi)u ωi [W, Lemma V.2.1]. Fur-
ther, ω 7→ d(ω) is constant on Ψ(Mi)u ωi, and the function ω 7→ ẑ(iGMi(ΠMi

(ω)))
is continuous on Ψ(Mi)uωi. From the formula for induced representation, it follows
that

(ω, g) 7→ Θ̌IndGPi
(ω)(g)

is measurable on (Ψ(Mi)u ωi)×G. Now, obviously, the function

(ω, g) 7→ µ(ω) d(ω) ẑ(iGMi(ΠMi (ω))) Θ̌IndGPi
(ω)(g) ϕ(g)

is measurable on (Ψ(Mi)u ωi)×G. We prove that

(2.5.3) (ω, g) 7→ |µ(ω) d(ω) ẑ(iGMi(ΠMi (ω))) Θ̌IndGPi
(ω)(g) ϕ(g)|

is integrable on (Ψ(Mi)u ωi)×G. To do this, it is enough to show that

(2.5.4) (ω, g) 7→ |Θ̌IndGPi
(ω)(g) ϕ(g)|

is integrable on (Ψ(Mi)u ωi) ×G because the factor µ(ω) d(ω) ẑ(iGMi(ΠMi(ω))) is
bounded on Ψ(Mi)u ωi. More precisely, µ(ω) d(ω) ẑ(iGMi(ΠMi (ω))) is continuous
on Ψ(Mi)u ωi, and Ψ(Mi)u ωi is compact. The choice of ωi as a base point in
(Ψ(Mi)u ωi) results in the question of integrability being equivalent to the inte-
grability of (χ, g) 7→ |Θ̌IndGPi

(χωi)(g) ϕ(g)| on Ψ(Mi)u × G. Heuristically, (χ, g) 7→
|Θ̌IndGPi

(χωi)(g)| is a locally integrable function on Ψ(Mi)u×G and ϕ is a compactly
supported function on G, so their product is integrable. More precisely, and for
the sake of completeness, we follow the calculation in [vD, §5, page 237]. We use
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Weyl’s integration formula. Let Γ be a maximal torus in G defined over F . For
γ ∈ Γ ∩G′ define the orbital integral

(2.5.5) FG/Γϕ (γ) = |DG(γ)|1/2
∫
G/Γ

f(xγx−1) dx .

Set WG(Γ) := NG(Γ)/Γ. Let CG be a set of representatives for the conjugacy classes
of maximal (F)-tori in G. We have∫

Ψu(Mi)

(∫
G

|Θ̌IndGPi
(χωi)(g) ϕ(g)|dg

)
dχ(2.5.6)

≤
∫

Ψu(Mi)

(∑
Γ∈CG

|WG(Γ)|−1

∫
Γ

|DG(γ)|1/2

|ΘIndGPi
(χωi)(γ)||FG/Γϕ̌ (γ)|dγ

)
dχ

≤
∫

Ψu(Mi)

∑
Γ∈CG

|WG(Γ)|−1

∫
Γ

∑
s∈W (AMi ,AΓ)

(2.5.7)

|Θs(χωi)(γ)||DMs
i
(γ)|1/2|FG/Γϕ̌ (γ)|dγ

)
dχ

=

(∫
Ψu(Mi)

dχ

)∑
Γ∈CG

|WG(Γ)|−1

∫
Γ

∑
s∈W (AMi ,AΓ)

|Θs(ωi)(γ)||DMs
i
(γ)|1/2|FG/Γϕ̌ (γ)|dγ

)
.

We have used above that |Θs(χωi)(γ)| = |Θs(χ)s(ωi)(γ)| = |s(χ)(γ)Θs(ωi)(γ)| =
|Θs(ωi)(γ)|. The last integral converges by [vD, §5, page 237]. Now, Fubini’s theo-
rem implies that

(2.5.8) (ω, g) 7→ |µ(ω) d(ω) ẑ(iGMi(ΠMi(ω))) Θ̌IndGPi
(ω)(g) ϕ(g)|

is integrable on (Ψ(Mi)u ωi)×G and the function

(2.5.9) g 7→ ϕ(g) a(G|Mi)
∫

Ψ(Mi)u ωi

ẑ(iGMi(ΠMi)(ω)) Θ̌IndGPi
(ω)(g)µ(ω)d(ω)dω

is well-defined almost everywhere and integrable on G. We can therefore define a
function fz by the formula
(2.5.10)

fz : g 7→
n∑
i=1

a(G|Mi)
∫

Ψ(Mi)u ωi

ẑ(iGMi(ΠMi
)(ω)) Θ̌IndGPi

(ω)(g)µ(ω)d(ω)dω.

This function is well-defined almost everywhere and locally integrable on G. Fur-
thermore,

(2.5.11) z(ϕ) =
∫
G

ϕ(g)fz(g)dg
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for ϕ ∈ C∞c (G). Since the character is a class function, so is fz. This completes
the proof of (ii)

To prove assertion (iii), let zΩ ∈ Z(Ω) be a family indexed by the connected
components Ω ⊆ Ω(G). Note (since zΩ ∈ Z(Ω)) that by (2.5.2) we have

(2.5.12) zΩ(ϕ) =
n∑
i=1

a(G|Mi)
∫

Ψ(Mi)u ωi

ẑΩ(i(ω)) tr
(
πω(ϕ̌)

)
µ(ω) d(ω) dω,

where, for ease of notation, we have used ẑΩ(ω) (resp. tr(πω(ϕ̌))) as obvious abbre-
viations for ẑΩ(iGMi(ΠMi )) (resp. trace

(
IndGPi(ω)(ϕ̌)

)
. For a given open compact

subgroup J , only finitely many connected components of the smooth dual G̃ possess
representations with nontrivial J-invariant vectors. This well-known fact and the
above formula imply that πω(ϕ̌) is nonzero; hence zΩ(ϕ) is nonzero for only finitely
many components Ω. We conclude that the distribution z :=

∑
Ω zΩ is well-defined.

To complete the proof of (iii), it remains to show that z is essentially compact;
i.e., z ? ϕ is compactly supported for any ϕ ∈ C∞c (G). We do this by again using
(2.5.12). By the remark in section 2.2, it suffices to show for an arbitary open
compact subgroup J of G that z ? chJ is a compactly supported function. To do
this, it suffices to show the function zΩ ? chJ = chJ ? zΩ is nonzero for only finitely
many Ω ⊆ Ω(G). We have

zΩ ? chJ (g) = zΩ(λg((chJ )̌ )) = zΩ(λg(chJ ))

=
n∑
i=1

a(G|Mi)
∫

Ψ(Mi)u ωi

ẑΩ(i(ω)) tr
(
πω((λg(chJ ))̌ )

)
µ(ω) d(ω) dω.

(2.5.13)

The function (λg(chJ))̌ is left J-invariant and so πω((λg(chJ ))̌ ) lies in
(
IndGPi(ω)

)J .
But this later space is nonzero for only finitely many components Ω, and by con-
sequence tr

(
πω((λg(chJ ))̌ )

)
and hence the integral in (2.5.13) is nonzero for only

finitely many components Ω. This proves (iii).
We turn finally to the proof of statement (iv). Suppose z ∈ Z(G). Consider ẑ :

Ω(G)→ C. For Ω ⊆ Ω(G) let ẑΩ denote the function on Ω(G) which coincides with
ẑ on Ω and is zero elsewhere. Let zΩ ∈ Z(G) denote the distribution corresponding
to ẑΩ. By (iii), we know that z −

∑
Ω zΩ ∈ Z(G). Moreover, by construction

(z −
∑

Ω zΩ)̂ = 0. Thus, z =
∑

Ω zΩ. In the same way, one sees that if
∑

Ω zΩ = 0
for zΩ ∈ Z(Ω), then zΩ = 0 for all Ω. This implies (iv). �

3. SL(2, F )

In this section we shall determine explicitly the locally integrable functions that
determine the Bernstein center in the case of G = SL(2, F ). More precisely, we
shall consider a natural basis of regular functions on Ω(G), and determine explicitly
distributions in the Bernstein center as locally integrable functions onG which, after
Fourier Transform, give corresponding elements of the natural basis.

3.1. Cuspidal components. We consider connected components of Ω(G). Fix an
irreducible cuspidal representation ρ of G. Then {[G, ρ]G} is a (cuspidal) connected
component of Ω(G). Let e0 = e

(ρ)
0 denote the characteristic function of [G, ρ]G ∈

Ω(G). Let d(ρ) denote the formal degree of ρ. In the inversion formula, we have
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γ(G|G) = c(G|G) = 1, µ(ρ) = 1 and |WG| = 1; so the inversion formula gives

(d(ρ)Θ̌π )̂ = e0 .

3.2. Characters of principal series representations. Let A0 (resp. P0) denote
the diagonal (resp. upper triangular) matrices in G. Let λ be a character of F×.
For convenience, we also denote as λ the character of A0 and P0 given by

diag(a, a−1) 7→ λ(a) .

Let π = π(λ) = IndGP0
(λ) denote the principal series representation. It is well-

known that the character Θπ of π is supported on the adjoint orbit of A0. If g ∈ G
is conjugate to diag(a, a−1) for some a ∈ F×, then

Θπ(g) =
λ(a) + λ(a−1)
|a− a−1|F

.

We rewrite this formula as follows: Fix a uniformizing element $, i.e. a generator
of the maximal ideal in the ring of integers O of F . Denote q = |$|−1

F (| |F is
a modulus character of F ). Let λ0 denote the restriction of λ to O× and set
s = λ($) ∈ C×. Since λ0 and s completely determine λ, we shall also denote λ by
(λ0, s). For o ∈ O× and k ∈ Z, the above formula gives

Θπ(diag($ko,$−ko−1)) =
λ0(o)sk + λ0(o−1)s−k

|$ko2 −$−k|F

=

{
λ0(o)sk+λ0(o−1)s−k

q|k|
when k 6= 0,

λ0(o)+λ0(o−1)
|o2−1|F . when k = 0.

We note that

γ(G|A0) =
q + 1
q

, c(G|A0) = 1, |WA0 | = 2, d(λ) = 1.

3.3. Non-cuspidal components. We can parameterize the non-cuspidal con-
nected components in Ω(G) as the set of character pairs

{
{λ0, λ

−1
0 }

∣∣λ0 ∈ (O× )̂
}

.
To {λ0, λ

−1
0 }, we associate the component

{
[
A0, (λ0, s)

]
G
| s ∈ C× } = {

[
A0, (λ−1

0 , s)
]
G
| s ∈ C× } .

Fix {λ0, λ
−1
0 } and let Ω = Ω({λ0, λ

−1
0 }) denote the associated component. We

consider connected components according to three cases:
(i) λ2

0 6= 1,
(ii) λ0 has order two,
(iii) λ0 = 1.

3.4. Regular non-cuspidal components. If λ2
0 6= 1, then there are two natural

ways to identify Ω with C×:

s 7→ (λ0, s) and s 7→ (λ−1
0 , s) .

We fix such an identification. Then, regular functions on Ω have as a natural basis
the functions (recall, the uniformizing element is fixed)

en = e(λ0)
n : s 7→ sn, n ∈ Z.
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Let zn = z
(λ0)
n ∈ Z(G) be the distribution corresponding to en. Note that e(λ0)

n

and z(λ0)
n depend on the choice of uniformizing element $.

For ϕ ∈ C∞c (G), and z ∈ Z(Ω), the Plancherel inversion formula yields

z(ϕ) =
q

2(q + 1)

∑
ε∈{±1}

∫
{t∈C

∣∣ |t|=1}
ẑ(iGM∅(ΠM∅

((λε0, t
ε))))

×
(∫

G

ϕ(g)Θ̌IndGP∅
((λε0,t

ε))(g)dg
)
µ((λε0, t

ε)) dt,

for ϕ ∈ C∞c (G). In the above formula dt denotes the Haar measure on {t ∈ C; |t| =
1}. It follows directly from the definition that µ((λ−1

0 , t−1)) = µ((λ0, t)). Further,
µ((λ0, t)) is constant on Ω, and this constant is equal to µΩ := ( q+1

q )2qf(λ0), where
f(λ0) is the conductor of λ0. Observe also that Π

M∅
((λ−1

0 , t−1)) = ΠM∅((λ0, t)); so
Θ̌IndGP∅

((λ0,t))(g) = ΘIndGP∅
((λ0,t))(g) and

z(ϕ) =
q

(q + 1)

∫
{t∈C

∣∣ |t|=1}
ẑ(iGM∅(ΠM∅((λ0, t))))

×
(∫

G

ϕ(g)ΘIndGP∅
((λ0,t))(g)dg

)
µΩ dt.

Identifying Ω with C× we get

z(ϕ) = µΩ
q

q + 1
1

2πi

∫
{t∈C

∣∣ |t|=1}
ẑ(s)

(∫
G

ϕ(g)ΘIndGP∅
((λ0,s))(g)dg

)
ds

s
.

Here, ds denotes the complex integral along the unit circle {t ∈ C ∣∣ |t| = 1} and
i =
√
−1. By Fubini’s theorem we have

z(ϕ) =
∫
G

ϕ(g)
((q + 1

q

)
qf(λ0) 1

2πi

∫
{t∈C

∣∣ |t|=1}
ẑ(s)ΘIndGP∅

((λ0,s))(g)
ds

s

)
dg,

and therefore the locally integrable function

fz(g) =
(q + 1

q

)
qf(λ0) 1

2πi

∫
{t∈C

∣∣ |t|=1}
ẑ(s)ΘIndGP∅

((λ0,s))(g)
ds

s

represents the distribution z.
We now compute fzn = f

z
(λ0)
n

. Clearly, fzn is conjugation invariant. Note that
fzn(g) is zero if g is not conjugate to an element from A∅. We have

fzn(diag($ko,$−ko−1)) =
(q + 1

q

)
qf(λ0) 1

2πi

∫
|s|=1

sn
λ0(o)sk + λ0(o−1)s−k

|$ko2 −$−k|F
ds

s
.

For k = 0 we get

fzn(diag(o, o−1)) =
(q + 1

q

)
qf(λ0) 1

2πi

∫
|s|=1

sn
λ0(o) + λ0(o−1)
|o2 − 1|F

ds

s

=

{(
q+1
q

)
qf(λ0) λ0(o)+λ0(o−1)

|o2−1|F when n = 0,

0 when n 6= 0 .

(3.4.1)
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For k 6= 0 we get

fzn(diag($ko,$−ko−1)) =
(q + 1

q

)
qf(λ0) 1

2πi

∫
|s|=1

sn
λ0(o)sk + λ0(o−1)s−k

|$ko2 −$−k|F
ds

s

=


0 when k 6= ±n,(
q+1
q

)
qf(λ0) λ0(o−1)

|$ko2−$−k|F when k = n,(
q+1
q

)
qf(λ0) λ0(o)

|$ko2−$−k|F when k = −n

=


0 when k 6= ±n,(
q+1
q

)
qf(λ0) q−|n|λ0(o−1) when k = n,(

q+1
q

)
qf(λ0) q−|n|λ0(o) when k = −n.

(3.4.2)

In particular, the minimal projector eΩ = fz0 is

(3.4.3) fz0(diag($ko,$−ko−1)) =

{(
q+1
q

)
qf(λ0) λ0(o)+λ0(o−1)

|o2−1|F when k = 0,
0 when k 6= 0.

Observe that if n 6= 0, then the formula (3.4.1) holds for all k ∈ Z (including k = 0).

3.5. Irregular ramified principal series components. Let λ0 be a nontriv-
ial character of O× of order two. Note that s1, s2 ∈ C× give conjugate pairs
(A0, (λ0, s1)) and (A0, (λ0, s2)) if and only if s1 = s±1

2 . In this way we shall pa-
rameterize Ω (parameters are in C×). For the basis of polynomials one can take
here

en = e(λ0)
n : s 7→ sn + s−n, n ∈ Z+.

The function µ is the constant µΩ :=
(
q+1
q

)2
q. The Plancherel inversion formula

for z ∈ Z(Ω) gives (after identification of Ω with C×)

z(ϕ) = µΩ
q

2(q + 1)
1

2πi

∫
{s∈C

∣∣ |s|=1}
ẑ(s)

(∫
G

ϕ(g) Θ̌IndGP∅
((λ0,s))(g) dg

)
ds

s

=
∫
G

ϕ(g)
(
q + 1

2

∫
{s∈C

∣∣ |s|=1}
ẑ(s) Θ̌IndGP∅

((λ0,s))(g)
ds

s

)
dg,

for ϕ ∈ C∞c . Thus

fen = f
e
(λ0)
n

=
q + 1

2

∫
{s∈C;|s|=1}

(sn + s−n) Θ̌IndGP∅
((λ0,s))(g)

ds

s
.

The function fzn is invariant, and equals zero on elements which are not conjugate
to elements of A0. We have further

fzn(diag($ko,$−ko−1)) =
q + 1

2
1

2πi

∫
|s|=1

(sn + s−n)
λ0(o)sk + λ0(o−1)s−k

|$ko2 −$−k|F
ds

s

= (q + 1)
1

2πi

∫
|s|=1

sn
λ0(o)(sk + s−k)
|$ko2 −$−k|F

ds

s
.

(3.5.1)
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For k = 0 we get

fzn(diag(o, o−1)) = (q + 1)
1

2πi

∫
|s|=1

sn
2λ0(o)
|o2 − 1|F

ds

s

=

{
(q + 1) 2λ0(o)

|o2−1|F when n = 0,

0 when n 6= 0.

(3.5.2)

For k 6= 0 we get from (3.5.1)

fzn(diag($ko,$−ko−1)) =

{
0 when k 6= ±n,
(q + 1) λ0(o)

|$ko2−$−k|F when k = ±n

=

{
0 when k 6= ±n,
(q + 1) q−|n|λ0(o) when k = n.

(3.5.3)

In particular, observe that the minimal projector eΩ = fz0 is

(3.5.4) fz0(diag($ko,$−ko−1)) =

{
(q + 1) λ0(o)

|o2−1|F when k = 0,
0 when k 6= 0.

Again if n 6= 0, the formula (3.5.2) holds also for k = 0.

3.6. Unramified principal series component. Let Ω be the unramified compo-
nent of Ω(G). We attach to s ∈ C× the character (1O× , s) : diag($ko,$−ko−1) 7→
sk, o ∈ O×, k ∈ Z. Then s and s−1 give the same element of Ω, and this is the
only case when this happens. The regular functions on this component have for a
natural basis

en = e
(1O× )
n : s 7→ sn + s−n, n ∈ Z+.

For ϕ ∈ C∞c (G) and z ∈ Z(Ω), the Plancherel inversion formula gives

z(ϕ) =
q + 1

2q
1

2πi

∫
|s|=1

ẑ(s)

×
(∫

G

ϕ(g) Θ̌
Ind

SL(2,F )
P∅

((1O× ,s))
(g)dg

)
(1− s)(1 − s−1)
(q − s)(q − s−1)

ds

s

+ d(StSL(2))ẑ(q)
∫
G

ϕ(g)Θ̌StSL(2,F )(g)dg

=
∫
G

ϕ(g)
(
q + 1

2q
1

2πi

∫
|s|=1

ẑ(s)Θ̌
Ind

SL(2,F )
P∅

((1O× ,s))
(g)

(1 − s)(1− s−1)
(q − s)(q − s−1)

ds

s

)
dg

+
∫
G

ϕ(g)
(
(q − 1)ẑ(q)Θ̌StSL(2,F )(g)

)
dg .

So,

(3.6.1) fen = f ′en + f ′′en
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where

f ′en(g) =
q + 1

2q
1

2πi

∫
|s|=1

(sn + s−n) Θ̌
Ind

SL(2,F )
P∅

((1O× ,s))
(g)

(1 − s)(1− s−1)
(q − s)(q − s−1)

ds

s

=
q + 1
q

1
2πi

∫
|s|=1

sn Θ̌
Ind

SL(2,F )
P∅

((1O× ,s))
(g)

(1 − s)(1− s−1)
(q − s)(q − s−1)

ds

s

and

f ′′en(g) = (q − 1)(qn + q−n) Θ̌StSL(2,F )(g).

Both these functions are invariant. In particular,

(3.6.2) f ′′en(g) =


(q − 1)(qn + q−n)

(
qk+q−k

|$ko2−$−k|F − 1
)

if g is conjugate to

diag($ko,$−ko−1)

−(q − 1)(qn + q−n) otherwise .

The function f ′en has support in Ad(G)A0. If g is conjugate to diag($ko,$−ko−1),
we have

f ′en(g) =
q + 1
q

2
|$ko2 −$−k|F

1
2πi

∫
|s|=1

sn(sk + s−k)
(1 − s)(1− s−1)
(q − s)(q − s−1)

ds

s
.

Set

(3.6.3) Il =
1

2πi

∫
|s|=1

sl
(1− s)(1− s−1)
(q − s)(q − s−1)

ds

s
.

Thus

(3.6.4) f ′en(diag($ko,$−ko−1)) =
q + 1
q

2
|$ko2 −$−k|F

(In+k + In−k).

We now compute Il. From

sl−1 (1 − s)(1− s−1)
(q − s)(q − s−1)

= sl−1 (1− s)(s− 1)
(q − s)(sq − 1)

=
1
q
sl−1 (1− s)2

(q − s)(1/q − s)

=
1
q
sl−1 (1 − s)2

(1− s/q)(1− sq) ,

we see that the above function has exactly one pole in the circle |s| = 1 if l ≥ 1. It
is at s = q−1. If l ≤ 0, there is an additional pole at s = 0. We now compute the
residues. The residue at 1/q is

lim
s→1/q

(s− 1/q)
1
q
sl−1 (1 − s)2

(q − s)(1/q − s) = lim
s→1/q

− 1
q
sl−1 (1− s)2

(q − s)

= −1
q
q1−l (1 − 1/q)2

(q − 1/q)
= −q−l−1 (q − 1)2

(q2 − 1)

= −q−l−1 (q − 1)
(q + 1)

.
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Now suppose that l ≤ 0. Then

1
q
sl−1 (1− s)2

(1− s/q)(1− sq) =
1
q

(sl−1 − 2sl + sl+1)

( ∞∑
a=0

sa

qa

)( ∞∑
b=0

qbsb

)

=
1
q

(sl−1 − 2sl + sl+1)

( ∞∑
m=0

(
m∑
b=0

q2b−m

)
sm

)

=
1
q

(sl−1 − 2sl + sl+1)

( ∞∑
m=0

(
q−m

q2m+2 − 1
q2 − 1

)
sm

)

=
1

q2 − 1
(sl−1 − 2sl + sl+1)

( ∞∑
m=0

(qm+1 − q−m−1)sm
)

and we see the residue at 0 is
1

q2−1 (q − q−1) when l = 0,
1

q2−1

(
(q2 − q−2) + (q − q−1)

)
when l = −1,

1
q2−1

(
(q−l+1 − ql−1) + (q−l − ql) + (q−l−1 − ql+1)

)
when l < −1;

i.e., {
1

q2−1 (q − q−1) when l = 0,
1

q2−1

∑−l+1
i=−l−1(q−i − qi) when l ≤ −1.

Thus

(3.6.5) Il =


− q−l−1 (q−1)

(q+1) when l ≥ 1,

− q−l−1 (q−1)
(q+1) + 1

q2−1 (q − q−1) when l = 0,

− q−l−1 (q−1)
(q+1) + 1

q2−1

∑−l+1
i=−l−1(q−i − qi) when l ≤ −1.

Now (3.6.1), (3.6.2), (3.6.5) and (3.6.4) yield fen ((3.6.5) and (3.6.4) yield f ′en).
The minimal projector eΩ equals 1

2fe0 = 1
2f
′
e0 + 1

2f
′′
e0 and

1
2
f ′e0 (diag($ko,$−ko−1)) =

q + 1
q

1
|$ko2 −$−k|F

(Ik + I−k)

=
q + 1
q

1
|$ko2 −$−k|F


2

q(q+1) when k = 0,

2qk+1−qk+2qk−1−q−k+1−q−k−q−k−1

q2−1 when k > 0 .

(3.6.6)

Remark. With the exception of the unramified component, the functions represent-
ing the minimal projectors of all the other components have support in the compact
elements of G.
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