Quasi-exceptional sets and equivariant coherent sheaves on the nilpotent cone
HTML articles powered by AMS MathViewer
- by Roman Bezrukavnikov PDF
- Represent. Theory 7 (2003), 1-18 Request permission
Abstract:
A certain $t$-structure on the derived category of equivariant coherent sheaves on the nil-cone of a simple complex algebraic group is introduced by the author in the paper Perverse coherent sheaves (the so-called perverse $t$-structure corresponding to the middle perversity). In the present note we show that the same $t$-structure can be obtained from a natural quasi-exceptional set generating this derived category. As a consequence we obtain a bijection between the sets of dominant weights and pairs consisting of a nilpotent orbit, and an irreducible representation of the centralizer of this element, conjectured by Lusztig and Vogan (and obtained by other means by the author in the paper On tensor categories attached to cells in affine Weyl groups, to be published).References
-
[AB]1 Arkhipov, S., Bezrukavnikov, R., Perverse sheaves on affine flags and Langlands dual group, preprint, math.RT/0201073.
- A. A. Beĭlinson, J. Bernstein, and P. Deligne, Faisceaux pervers, Analysis and topology on singular spaces, I (Luminy, 1981) Astérisque, vol. 100, Soc. Math. France, Paris, 1982, pp. 5–171 (French). MR 751966
- Alexander Beilinson, Victor Ginzburg, and Wolfgang Soergel, Koszul duality patterns in representation theory, J. Amer. Math. Soc. 9 (1996), no. 2, 473–527. MR 1322847, DOI 10.1090/S0894-0347-96-00192-0 [B1]B Bezrukavnikov, R., On tensor categories attached to cells in affine Weyl groups, preprint, math.RT/001008, to appear in “Representation Theory of Algebraic Groups and Quantum Groups,” Advanced Studies in Pure Math. [B2]izvrat Bezrukavnikov, R., Perverse coherent sheaves, preprint, math.AG/0005152. [B3]2 Bezrukavnikov, R., Perverse sheaves on affine flags and nilpotent cone of the Langlands dual group, preprint, math.RT/0201256.
- A. I. Bondal and M. M. Kapranov, Representable functors, Serre functors, and reconstructions, Izv. Akad. Nauk SSSR Ser. Mat. 53 (1989), no. 6, 1183–1205, 1337 (Russian); English transl., Math. USSR-Izv. 35 (1990), no. 3, 519–541. MR 1039961, DOI 10.1070/IM1990v035n03ABEH000716
- Bram Broer, Line bundles on the cotangent bundle of the flag variety, Invent. Math. 113 (1993), no. 1, 1–20. MR 1223221, DOI 10.1007/BF01244299
- Abraham Broer, A vanishing theorem for Dolbeault cohomology of homogeneous vector bundles, J. Reine Angew. Math. 493 (1997), 153–169. MR 1491811, DOI 10.1515/crll.1997.493.153
- Abraham Broer, Decomposition varieties in semisimple Lie algebras, Canad. J. Math. 50 (1998), no. 5, 929–971. MR 1650954, DOI 10.4153/CJM-1998-048-6
- Neil Chriss and Victor Ginzburg, Representation theory and complex geometry, Birkhäuser Boston, Inc., Boston, MA, 1997. MR 1433132
- Pierre Deligne, La conjecture de Weil. II, Inst. Hautes Études Sci. Publ. Math. 52 (1980), 137–252 (French). MR 601520, DOI 10.1007/BF02684780
- Michel Demazure, A very simple proof of Bott’s theorem, Invent. Math. 33 (1976), no. 3, 271–272. MR 414569, DOI 10.1007/BF01404206
- M. Gontcharoff, Sur quelques séries d’interpolation généralisant celles de Newton et de Stirling, Uchenye Zapiski Moskov. Gos. Univ. Matematika 30 (1939), 17–48 (Russian, with French summary). MR 0002002, DOI 10.1007/s002220100122 [Gi]Gi Ginzburg, V., Perverse sheaves on a Loop group and Langlands’ duality, preprint, alg-geom/9511007.
- Robin Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, No. 52, Springer-Verlag, New York-Heidelberg, 1977. MR 0463157, DOI 10.1007/978-1-4757-3849-0
- V. Hinich, On the singularities of nilpotent orbits, Israel J. Math. 73 (1991), no. 3, 297–308. MR 1135219, DOI 10.1007/BF02773843
- Bertram Kostant, Lie group representations on polynomial rings, Amer. J. Math. 85 (1963), 327–404. MR 158024, DOI 10.2307/2373130
- George Lusztig, Cells in affine Weyl groups. IV, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 36 (1989), no. 2, 297–328. MR 1015001
- Ivan Mirković and Kari Vilonen, Perverse sheaves on affine Grassmannians and Langlands duality, Math. Res. Lett. 7 (2000), no. 1, 13–24. MR 1748284, DOI 10.4310/MRL.2000.v7.n1.a2 [O]O Ostrik, V., On the $K$-theory of the nilpotent cone, preprint, math.AG/9911068.
- D. I. Panyushev, Rationality of singularities and the Gorenstein property of nilpotent orbits, Funktsional. Anal. i Prilozhen. 25 (1991), no. 3, 76–78 (Russian); English transl., Funct. Anal. Appl. 25 (1991), no. 3, 225–226 (1992). MR 1139878, DOI 10.1007/BF01085494 [P]P Positselskii, L., private communication. [PS]PS Parshall, B., Scott, L., Derived categories, quasi-hereditary algebras, and algebraic groups, preprint, 1987.
- Jean-Louis Verdier, Des catégories dérivées des catégories abéliennes, Astérisque 239 (1996), xii+253 pp. (1997) (French, with French summary). With a preface by Luc Illusie; Edited and with a note by Georges Maltsiniotis. MR 1453167
Additional Information
- Roman Bezrukavnikov
- Affiliation: Department of Mathematics, Northwestern University, Evanston, Illinois 60208
- MR Author ID: 347192
- Email: bezrukav@math.northwestern.edu
- Received by editor(s): February 15, 2002
- Received by editor(s) in revised form: July 31, 2002
- Published electronically: January 9, 2003
- Additional Notes: The author is supported by the NSF grant DMS0071967, and by the Clay Mathematical Institute
- © Copyright 2003 American Mathematical Society
- Journal: Represent. Theory 7 (2003), 1-18
- MSC (2000): Primary 20G99
- DOI: https://doi.org/10.1090/S1088-4165-03-00158-4
- MathSciNet review: 1973365