Quantum loop modules
HTML articles powered by AMS MathViewer
- by Vyjayanthi Chari and Jacob Greenstein
- Represent. Theory 7 (2003), 56-80
- DOI: https://doi.org/10.1090/S1088-4165-03-00168-7
- Published electronically: February 26, 2003
- PDF | Request permission
Abstract:
We classify the simple infinite-dimensional integrable modules with finite-dimensional weight spaces over the quantized enveloping algebra of an untwisted affine algebra. We prove that these are either highest (lowest) weight integrable modules or simple submodules of a loop module of a finite-dimensional simple integrable module and describe the latter class. Their characters and crystal basis theory are discussed in a special case.References
- Tatsuya Akasaka and Masaki Kashiwara, Finite-dimensional representations of quantum affine algebras, Publ. Res. Inst. Math. Sci. 33 (1997), no. 5, 839–867. MR 1607008, DOI 10.2977/prims/1195145020
- Jonathan Beck, Braid group action and quantum affine algebras, Comm. Math. Phys. 165 (1994), no. 3, 555–568. MR 1301623, DOI 10.1007/BF02099423
- Jonathan Beck, Vyjayanthi Chari, and Andrew Pressley, An algebraic characterization of the affine canonical basis, Duke Math. J. 99 (1999), no. 3, 455–487. MR 1712630, DOI 10.1215/S0012-7094-99-09915-5
- Vyjayanthi Chari, Integrable representations of affine Lie-algebras, Invent. Math. 85 (1986), no. 2, 317–335. MR 846931, DOI 10.1007/BF01389093
- Vyjayanthi Chari, Braid group actions and tensor products, Int. Math. Res. Not. 7 (2002), 357–382. MR 1883181, DOI 10.1155/S107379280210612X
- Vyjayanthi Chari and Andrew Pressley, New unitary representations of loop groups, Math. Ann. 275 (1986), no. 1, 87–104. MR 849057, DOI 10.1007/BF01458586
- Vyjayanthi Chari and Andrew Pressley, Quantum affine algebras, Comm. Math. Phys. 142 (1991), no. 2, 261–283. MR 1137064, DOI 10.1007/BF02102063
- Vyjayanthi Chari and Andrew Pressley, A guide to quantum groups, Cambridge University Press, Cambridge, 1995. Corrected reprint of the 1994 original. MR 1358358
- Vyjayanthi Chari and Andrew Pressley, Weyl modules for classical and quantum affine algebras, Represent. Theory 5 (2001), 191–223. MR 1850556, DOI 10.1090/S1088-4165-01-00115-7
- V. G. Drinfel′d, A new realization of Yangians and of quantum affine algebras, Dokl. Akad. Nauk SSSR 296 (1987), no. 1, 13–17 (Russian); English transl., Soviet Math. Dokl. 36 (1988), no. 2, 212–216. MR 914215 EM P. Etingof and A. Moura, Elliptic Central Characters and Blocks of Finite Dimensional Representations of Quantum Affine Algebras, Preprint math.QA/0204302.
- Edward Frenkel and Evgeny Mukhin, Combinatorics of $q$-characters of finite-dimensional representations of quantum affine algebras, Comm. Math. Phys. 216 (2001), no. 1, 23–57. MR 1810773, DOI 10.1007/s002200000323
- Edward Frenkel and Nicolai Reshetikhin, The $q$-characters of representations of quantum affine algebras and deformations of $\scr W$-algebras, Recent developments in quantum affine algebras and related topics (Raleigh, NC, 1998) Contemp. Math., vol. 248, Amer. Math. Soc., Providence, RI, 1999, pp. 163–205. MR 1745260, DOI 10.1090/conm/248/03823 G1 J. Greenstein, Characters of simple bounded modules over an untwisted affine Lie algebra, Algebr. Represent. Theory (to appear). G —, Littelmann’s path crystal and combinatorics of certain integrable $\widehat {\mathfrak {sl}}_{l+1}$ modules of level zero. J. Algebra (to appear).
- M. Kashiwara, On crystal bases of the $Q$-analogue of universal enveloping algebras, Duke Math. J. 63 (1991), no. 2, 465–516. MR 1115118, DOI 10.1215/S0012-7094-91-06321-0
- Masaki Kashiwara, The crystal base and Littelmann’s refined Demazure character formula, Duke Math. J. 71 (1993), no. 3, 839–858. MR 1240605, DOI 10.1215/S0012-7094-93-07131-1
- Masaki Kashiwara, On level-zero representations of quantized affine algebras, Duke Math. J. 112 (2002), no. 1, 117–175. MR 1890649, DOI 10.1215/S0012-9074-02-11214-9
- Naihuan Jing, On Drinfeld realization of quantum affine algebras, The Monster and Lie algebras (Columbus, OH, 1996) Ohio State Univ. Math. Res. Inst. Publ., vol. 7, de Gruyter, Berlin, 1998, pp. 195–206. MR 1650669, DOI 10.1515/9783110801897.195
- Anthony Joseph, A completion of the quantized enveloping algebra of a Kac-Moody algebra, J. Algebra 214 (1999), no. 1, 235–275. MR 1684872, DOI 10.1006/jabr.1998.7677
- A. Joseph, The admissibility of simple bounded modules for an affine Lie algebra, Algebr. Represent. Theory 3 (2000), no. 2, 131–149. MR 1769606, DOI 10.1023/A:1009985328440 JT A. Joseph and D. Todorić, On the quantum KPRV determinants for semisimple and affine Lie algebras, Algebr. Represent. Theory 5 (2002), no. 1, 57–99.
- G. Lusztig, Quantum deformations of certain simple modules over enveloping algebras, Adv. in Math. 70 (1988), no. 2, 237–249. MR 954661, DOI 10.1016/0001-8708(88)90056-4
- George Lusztig, Introduction to quantum groups, Progress in Mathematics, vol. 110, Birkhäuser Boston, Inc., Boston, MA, 1993. MR 1227098
- Hiraku Nakajima, $T$-analogue of the $q$-characters of finite dimensional representations of quantum affine algebras, Physics and combinatorics, 2000 (Nagoya), World Sci. Publ., River Edge, NJ, 2001, pp. 196–219. MR 1872257, DOI 10.1142/9789812810007_{0}009 N2 —, Extremal weight modules of quantum affine algebras, Preprint math.QA/0204183. VV M. Varagnolo and E. Vasserot, Standard modules of quantum affine algebras, Duke Math. J. 111 (2002), no. 3, 509–533.
Bibliographic Information
- Vyjayanthi Chari
- Affiliation: Department of Mathematics, University of California, Riverside, California 92521
- Email: chari@math.ucr.edu
- Jacob Greenstein
- Affiliation: Institut de Mathématiques de Jussieu, Université Pierre et Marie Curie, 175 rue du Chevaleret, Plateau 7D, F-75013 Paris, France
- Email: greenste@math.jussieu.fr
- Received by editor(s): June 28, 2002
- Received by editor(s) in revised form: October 25, 2002
- Published electronically: February 26, 2003
- © Copyright 2003 American Mathematical Society
- Journal: Represent. Theory 7 (2003), 56-80
- MSC (2000): Primary 17B67
- DOI: https://doi.org/10.1090/S1088-4165-03-00168-7
- MathSciNet review: 1973367
Dedicated: Dedicated to Anthony Joseph on the occasion of his 60th birthday