Virtual transfer factors
HTML articles powered by AMS MathViewer
- by Julia Gordon and Thomas C. Hales
- Represent. Theory 7 (2003), 81-100
- DOI: https://doi.org/10.1090/S1088-4165-03-00183-3
- Published electronically: March 3, 2003
Abstract:
The Langlands-Shelstad transfer factor is a function defined on some reductive groups over a $p$-adic field. Near the origin of the group, it may be viewed as a function on the Lie algebra. For classical groups, its values have the form $q^c \mathrm {sign}$, where $\mathrm {sign}\in \{-1,0,1\}$, $q$ is the cardinality of the residue field, and $c$ is a rational number. The $\mathrm {sign}$ function partitions the Lie algebra into three subsets. This article shows that this partition into three subsets is independent of the $p$-adic field in the following sense. We define three universal objects (virtual sets in the sense of Quine) such that for any $p$-adic field $F$ of sufficiently large residue characteristic, the $F$-points of these three virtual sets form the partition.
The theory of arithmetic motivic integration associates a virtual Chow motive with each of the three virtual sets. The construction in this article achieves the first step in a long program to determine the (still conjectural) virtual Chow motives that control the behavior of orbital integrals.
References
- Jan Denef and François Loeser, Definable sets, motives and $p$-adic integrals, J. Amer. Math. Soc. 14 (2001), no. 2, 429–469. MR 1815218, DOI 10.1090/S0894-0347-00-00360-X
- Herbert B. Enderton, A mathematical introduction to logic, 2nd ed., Harcourt/Academic Press, Burlington, MA, 2001. MR 1801397, DOI 10.1016/B978-0-08-049646-7.50005-9
- Michael D. Fried and Moshe Jarden, Field arithmetic, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 11, Springer-Verlag, Berlin, 1986. MR 868860, DOI 10.1007/978-3-662-07216-5
- Roe Goodman and Nolan R. Wallach, Representations and invariants of the classical groups, Encyclopedia of Mathematics and its Applications, vol. 68, Cambridge University Press, Cambridge, 1998. MR 1606831 vdw N. Jacobson, Basic Algebra I, W.H. Freeman and Co., New York, 1996.
- Thomas C. Hales, A simple definition of transfer factors for unramified groups, Representation theory of groups and algebras, Contemp. Math., vol. 145, Amer. Math. Soc., Providence, RI, 1993, pp. 109–134. MR 1216184, DOI 10.1090/conm/145/1216184 H1 T. C. Hales, Can $p$-adic integrals be computed?, math.RT/0205207, to appear.
- Robert E. Kottwitz, Transfer factors for Lie algebras, Represent. Theory 3 (1999), 127–138. MR 1703328, DOI 10.1090/S1088-4165-99-00068-0
- Joseph Oesterlé, Réduction modulo $p^{n}$ des sous-ensembles analytiques fermés de $\textbf {Z}^{N}_{p}$, Invent. Math. 66 (1982), no. 2, 325–341 (French). MR 656627, DOI 10.1007/BF01389398
- Johan Pas, Uniform $p$-adic cell decomposition and local zeta functions, J. Reine Angew. Math. 399 (1989), 137–172. MR 1004136, DOI 10.1515/crll.1989.399.137
- Willard Van Orman Quine, Set theory and its logic, Revised edition, The Belknap Press of Harvard University Press, Cambridge, Mass., 1969. MR 0274272
- Jean-Pierre Serre, Quelques applications du théorème de densité de Chebotarev, Inst. Hautes Études Sci. Publ. Math. 54 (1981), 323–401 (French). MR 644559, DOI 10.1007/BF02698692
- Gaisi Takeuti and Wilson M. Zaring, Introduction to axiomatic set theory, 2nd ed., Graduate Texts in Mathematics, vol. 1, Springer-Verlag, New York, 1982. MR 718672, DOI 10.1007/978-1-4613-8168-6
- Jean-Loup Waldspurger, Intégrales orbitales nilpotentes et endoscopie pour les groupes classiques non ramifiés, Astérisque 269 (2001), vi+449 (French, with English and French summaries). MR 1817880
Bibliographic Information
- Julia Gordon
- Affiliation: The Fields Institute, 222 College St., Toronto, Ontario, M5T 3J1, Canada
- Email: julygord@umich.edu
- Thomas C. Hales
- Affiliation: Department of Mathematics, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
- Email: hales@pitt.edu
- Received by editor(s): December 6, 2002
- Published electronically: March 3, 2003
- © Copyright 2003 Julia Gordon and Thomas C. Hales
- Journal: Represent. Theory 7 (2003), 81-100
- MSC (2000): Primary 11F85, 22E50
- DOI: https://doi.org/10.1090/S1088-4165-03-00183-3
- MathSciNet review: 1973368