Canonical bases and quiver varieties
HTML articles powered by AMS MathViewer
- by Michela Varagnolo and Eric Vasserot PDF
- Represent. Theory 7 (2003), 227-258 Request permission
Abstract:
We prove the existence of canonical bases in the $K$-theory of quiver varieties. This existence was conjectured by Lusztig.References
- Tatsuya Akasaka and Masaki Kashiwara, Finite-dimensional representations of quantum affine algebras, Publ. Res. Inst. Math. Sci. 33 (1997), no. 5, 839–867. MR 1607008, DOI 10.2977/prims/1195145020
- Jonathan Beck, Braid group action and quantum affine algebras, Comm. Math. Phys. 165 (1994), no. 3, 555–568. MR 1301623, DOI 10.1007/BF02099423
- Jonathan Beck, Vyjayanthi Chari, and Andrew Pressley, An algebraic characterization of the affine canonical basis, Duke Math. J. 99 (1999), no. 3, 455–487. MR 1712630, DOI 10.1215/S0012-7094-99-09915-5
- Neil Chriss and Victor Ginzburg, Representation theory and complex geometry, Birkhäuser Boston, Inc., Boston, MA, 1997. MR 1433132
- Corrado De Concini and Volodimir Lyubashenko, Quantum function algebra at roots of $1$, Adv. Math. 108 (1994), no. 2, 205–262. MR 1296515, DOI 10.1006/aima.1994.1071
- Victor G. Kac, Infinite-dimensional Lie algebras, 3rd ed., Cambridge University Press, Cambridge, 1990. MR 1104219, DOI 10.1017/CBO9780511626234
- M. Kashiwara, On crystal bases of the $Q$-analogue of universal enveloping algebras, Duke Math. J. 63 (1991), no. 2, 465–516. MR 1115118, DOI 10.1215/S0012-7094-91-06321-0
- Masaki Kashiwara, Crystal bases of modified quantized enveloping algebra, Duke Math. J. 73 (1994), no. 2, 383–413. MR 1262212, DOI 10.1215/S0012-7094-94-07317-1 9 Kashiwara, M., On level zero representations of quantized affine algebras., QA/0010293.
- G. Lusztig, On quiver varieties, Adv. Math. 136 (1998), no. 1, 141–182. MR 1623674, DOI 10.1006/aima.1998.1729
- G. Lusztig, Canonical bases arising from quantized enveloping algebras. II, Progr. Theoret. Phys. Suppl. 102 (1990), 175–201 (1991). Common trends in mathematics and quantum field theories (Kyoto, 1990). MR 1182165, DOI 10.1143/PTPS.102.175
- George Lusztig, Finite-dimensional Hopf algebras arising from quantized universal enveloping algebra, J. Amer. Math. Soc. 3 (1990), no. 1, 257–296. MR 1013053, DOI 10.1090/S0894-0347-1990-1013053-9
- G. Lusztig, Total positivity in reductive groups, Lie theory and geometry, Progr. Math., vol. 123, Birkhäuser Boston, Boston, MA, 1994, pp. 531–568. MR 1327548, DOI 10.1007/978-1-4612-0261-5_{2}0
- G. Lusztig, Bases in equivariant $K$-theory, Represent. Theory 2 (1998), 298–369. MR 1637973, DOI 10.1090/S1088-4165-98-00054-5
- George Lusztig, Quiver varieties and Weyl group actions, Ann. Inst. Fourier (Grenoble) 50 (2000), no. 2, 461–489 (English, with English and French summaries). MR 1775358, DOI 10.5802/aif.1762
- G. Lusztig, Remarks on quiver varieties, Duke Math. J. 105 (2000), no. 2, 239–265. MR 1793612, DOI 10.1215/S0012-7094-00-10523-6
- S. Z. Levendorskiĭ and Ya. S. Soĭbel′man, Some applications of the quantum Weyl groups, J. Geom. Phys. 7 (1990), no. 2, 241–254. MR 1120927, DOI 10.1016/0393-0440(90)90013-S 18 Maffei, A., A remark on quiver varieties and Weyl groups, AG/0003159.
- Hiraku Nakajima, Quiver varieties and Kac-Moody algebras, Duke Math. J. 91 (1998), no. 3, 515–560. MR 1604167, DOI 10.1215/S0012-7094-98-09120-7
- Hiraku Nakajima, Quiver varieties and finite-dimensional representations of quantum affine algebras, J. Amer. Math. Soc. 14 (2001), no. 1, 145–238. MR 1808477, DOI 10.1090/S0894-0347-00-00353-2 21 Nakajima, H., Reflection functor for quiver varieties, Preprint (2000).
- Éric Vasserot, Représentations de groupes quantiques et permutations, Ann. Sci. École Norm. Sup. (4) 26 (1993), no. 6, 747–773 (French, with English summary). MR 1251151, DOI 10.24033/asens.1686
- E. Vasserot, Affine quantum groups and equivariant $K$-theory, Transform. Groups 3 (1998), no. 3, 269–299. MR 1640675, DOI 10.1007/BF01236876
- M. Varagnolo and E. Vasserot, Standard modules of quantum affine algebras, Duke Math. J. 111 (2002), no. 3, 509–533. MR 1885830, DOI 10.1215/S0012-7094-02-11135-1
Additional Information
- Michela Varagnolo
- Affiliation: Département de mathématique, Université de Cergy-Pontoise, 2, av. A. Chauvin, BP 222, 95302 Cergy-Pontoise cedex, France
- MR Author ID: 331546
- Email: michela.varagnolo@math.u-cergy.fr
- Eric Vasserot
- Affiliation: Département de mathématique, Université de Cergy-Pontoise, 2, av. A. Chauvin, BP 222, 95302 Cergy-Pontoise cedex, France
- Email: eric.vasserot@math.u-cergy.fr
- Received by editor(s): January 14, 2002
- Received by editor(s) in revised form: March 1, 2002, January 28, 2003, and May 27, 2003
- Published electronically: June 27, 2003
- Additional Notes: Both authors are partially supported by EU grant # ERB FMRX-CT97-0100
- © Copyright 2003 American Mathematical Society
- Journal: Represent. Theory 7 (2003), 227-258
- MSC (2000): Primary 17B37; Secondary 16E20
- DOI: https://doi.org/10.1090/S1088-4165-03-00154-7
- MathSciNet review: 1990661