## $t$–analogs of $q$–characters of Kirillov-Reshetikhin modules of quantum affine algebras

HTML articles powered by AMS MathViewer

- by Hiraku Nakajima
- Represent. Theory
**7**(2003), 259-274 - DOI: https://doi.org/10.1090/S1088-4165-03-00164-X
- Published electronically: July 10, 2003
- PDF | Request permission

## Abstract:

We prove the Kirillov-Reshetikhin conjecture concerning certain finite dimensional representations of a quantum affine algebra ${\mathbf U}_q(\widehat {\mathfrak g})$ when $\widehat {\mathfrak g}$ is an untwisted affine Lie algebra of type $ADE$. We use $t$–analog of $q$–characters introduced by the author in an essential way.## References

- Vyjayanthi Chari,
*Braid group actions and tensor products*, Int. Math. Res. Not.**7**(2002), 357–382. MR**1883181**, DOI 10.1155/S107379280210612X - Vyjayanthi Chari and Andrew Pressley,
*Quantum affine algebras and their representations*, Representations of groups (Banff, AB, 1994) CMS Conf. Proc., vol. 16, Amer. Math. Soc., Providence, RI, 1995, pp. 59–78. MR**1357195**, DOI 10.1007/BF00750760 - V. G. Drinfel′d,
*A new realization of Yangians and of quantum affine algebras*, Dokl. Akad. Nauk SSSR**296**(1987), no. 1, 13–17 (Russian); English transl., Soviet Math. Dokl.**36**(1988), no. 2, 212–216. MR**914215** - Edward Frenkel and Nikolai Reshetikhin,
*Quantum affine algebras and deformations of the Virasoro and ${\scr W}$-algebras*, Comm. Math. Phys.**178**(1996), no. 1, 237–264. MR**1387950**, DOI 10.1007/BF02104917 - Edward Frenkel and Nicolai Reshetikhin,
*The $q$-characters of representations of quantum affine algebras and deformations of $\scr W$-algebras*, Recent developments in quantum affine algebras and related topics (Raleigh, NC, 1998) Contemp. Math., vol. 248, Amer. Math. Soc., Providence, RI, 1999, pp. 163–205. MR**1745260**, DOI 10.1090/conm/248/03823 - Edward Frenkel and Evgeny Mukhin,
*Combinatorics of $q$-characters of finite-dimensional representations of quantum affine algebras*, Comm. Math. Phys.**216**(2001), no. 1, 23–57. MR**1810773**, DOI 10.1007/s002200000323 - G. Hatayama, A. Kuniba, M. Okado, T. Takagi, and Y. Yamada,
*Remarks on fermionic formula*, Recent developments in quantum affine algebras and related topics (Raleigh, NC, 1998) Contemp. Math., vol. 248, Amer. Math. Soc., Providence, RI, 1999, pp. 243–291. MR**1745263**, DOI 10.1090/conm/248/03826 - A. N. Kirillov and N. Yu. Reshetikhin,
*Representations of Yangians and multiplicities of the inclusion of the irreducible components of the tensor product of representations of simple Lie algebras*, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI)**160**(1987), no. Anal. Teor. Chisel i Teor. Funktsiĭ. 8, 211–221, 301 (Russian); English transl., J. Soviet Math.**52**(1990), no. 3, 3156–3164. MR**906858**, DOI 10.1007/BF02342935 - Harold Knight,
*Spectra of tensor products of finite-dimensional representations of Yangians*, J. Algebra**174**(1995), no. 1, 187–196. MR**1332866**, DOI 10.1006/jabr.1995.1123 - Atsuo Kuniba, Tomoki Nakanishi, and Junji Suzuki,
*Functional relations in solvable lattice models. I. Functional relations and representation theory*, Internat. J. Modern Phys. A**9**(1994), no. 30, 5215–5266. MR**1304818**, DOI 10.1142/S0217751X94002119 - Atsuo Kuniba, Tomoki Nakanishi, and Zengo Tsuboi,
*The canonical solutions of the $Q$-systems and the Kirillov-Reshetikhin conjecture*, Comm. Math. Phys.**227**(2002), no. 1, 155–190. MR**1903843**, DOI 10.1007/s002200200631
Lu:ferm G. Lusztig, - Hiraku Nakajima,
*Quiver varieties and finite-dimensional representations of quantum affine algebras*, J. Amer. Math. Soc.**14**(2001), no. 1, 145–238. MR**1808477**, DOI 10.1090/S0894-0347-00-00353-2 - Hiraku Nakajima,
*$T$-analogue of the $q$-characters of finite dimensional representations of quantum affine algebras*, Physics and combinatorics, 2000 (Nagoya), World Sci. Publ., River Edge, NJ, 2001, pp. 196–219. MR**1872257**, DOI 10.1142/9789812810007_{0}009
Na-qchar-main —, - M. Varagnolo and E. Vasserot,
*Standard modules of quantum affine algebras*, Duke Math. J.**111**(2002), no. 3, 509–533. MR**1885830**, DOI 10.1215/S0012-7094-02-11135-1
VV2 —,

*Ferminonic form and Betti numbers*, preprint, arXiv:math.QA/0005010.

*Quiver varieties and $t$–analogs of $q$–characters of quantum affine algebras*, preprint, arXiv:math.QA/0105173. Na:AD —,

*$t$–analogs of $q$–characters of quantum affine algebras of type $A_n$, $D_n$*, to appear.

*Perverse sheaves and quantum Grothendieck rings*, preprint, arXiv:math. QA/0103182.

## Bibliographic Information

**Hiraku Nakajima**- Affiliation: Department of Mathematics, Kyoto University, Kyoto 606-8502, Japan
- MR Author ID: 248505
- Email: nakajima@kusm.kyoto-u.ac.jp
- Received by editor(s): April 29, 2002
- Published electronically: July 10, 2003
- Additional Notes: Supported by the Grant-in-aid for Scientific Research (No.13640019), JSPS
- © Copyright 2003 American Mathematical Society
- Journal: Represent. Theory
**7**(2003), 259-274 - MSC (2000): Primary 17B37; Secondary 81R50, 82B23
- DOI: https://doi.org/10.1090/S1088-4165-03-00164-X
- MathSciNet review: 1993360

Dedicated: Dedicated to Professor Takushiro Ochiai on his sixtieth birthday