$t$–analogs of $q$–characters of Kirillov-Reshetikhin modules of quantum affine algebras
HTML articles powered by AMS MathViewer
- by Hiraku Nakajima
- Represent. Theory 7 (2003), 259-274
- DOI: https://doi.org/10.1090/S1088-4165-03-00164-X
- Published electronically: July 10, 2003
- PDF | Request permission
Abstract:
We prove the Kirillov-Reshetikhin conjecture concerning certain finite dimensional representations of a quantum affine algebra ${\mathbf U}_q(\widehat {\mathfrak g})$ when $\widehat {\mathfrak g}$ is an untwisted affine Lie algebra of type $ADE$. We use $t$–analog of $q$–characters introduced by the author in an essential way.References
- Vyjayanthi Chari, Braid group actions and tensor products, Int. Math. Res. Not. 7 (2002), 357–382. MR 1883181, DOI 10.1155/S107379280210612X
- Vyjayanthi Chari and Andrew Pressley, Quantum affine algebras and their representations, Representations of groups (Banff, AB, 1994) CMS Conf. Proc., vol. 16, Amer. Math. Soc., Providence, RI, 1995, pp. 59–78. MR 1357195, DOI 10.1007/BF00750760
- V. G. Drinfel′d, A new realization of Yangians and of quantum affine algebras, Dokl. Akad. Nauk SSSR 296 (1987), no. 1, 13–17 (Russian); English transl., Soviet Math. Dokl. 36 (1988), no. 2, 212–216. MR 914215
- Edward Frenkel and Nikolai Reshetikhin, Quantum affine algebras and deformations of the Virasoro and ${\scr W}$-algebras, Comm. Math. Phys. 178 (1996), no. 1, 237–264. MR 1387950, DOI 10.1007/BF02104917
- Edward Frenkel and Nicolai Reshetikhin, The $q$-characters of representations of quantum affine algebras and deformations of $\scr W$-algebras, Recent developments in quantum affine algebras and related topics (Raleigh, NC, 1998) Contemp. Math., vol. 248, Amer. Math. Soc., Providence, RI, 1999, pp. 163–205. MR 1745260, DOI 10.1090/conm/248/03823
- Edward Frenkel and Evgeny Mukhin, Combinatorics of $q$-characters of finite-dimensional representations of quantum affine algebras, Comm. Math. Phys. 216 (2001), no. 1, 23–57. MR 1810773, DOI 10.1007/s002200000323
- G. Hatayama, A. Kuniba, M. Okado, T. Takagi, and Y. Yamada, Remarks on fermionic formula, Recent developments in quantum affine algebras and related topics (Raleigh, NC, 1998) Contemp. Math., vol. 248, Amer. Math. Soc., Providence, RI, 1999, pp. 243–291. MR 1745263, DOI 10.1090/conm/248/03826
- A. N. Kirillov and N. Yu. Reshetikhin, Representations of Yangians and multiplicities of the inclusion of the irreducible components of the tensor product of representations of simple Lie algebras, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 160 (1987), no. Anal. Teor. Chisel i Teor. Funktsiĭ. 8, 211–221, 301 (Russian); English transl., J. Soviet Math. 52 (1990), no. 3, 3156–3164. MR 906858, DOI 10.1007/BF02342935
- Harold Knight, Spectra of tensor products of finite-dimensional representations of Yangians, J. Algebra 174 (1995), no. 1, 187–196. MR 1332866, DOI 10.1006/jabr.1995.1123
- Atsuo Kuniba, Tomoki Nakanishi, and Junji Suzuki, Functional relations in solvable lattice models. I. Functional relations and representation theory, Internat. J. Modern Phys. A 9 (1994), no. 30, 5215–5266. MR 1304818, DOI 10.1142/S0217751X94002119
- Atsuo Kuniba, Tomoki Nakanishi, and Zengo Tsuboi, The canonical solutions of the $Q$-systems and the Kirillov-Reshetikhin conjecture, Comm. Math. Phys. 227 (2002), no. 1, 155–190. MR 1903843, DOI 10.1007/s002200200631 Lu:ferm G. Lusztig, Ferminonic form and Betti numbers, preprint, arXiv:math.QA/0005010.
- Hiraku Nakajima, Quiver varieties and finite-dimensional representations of quantum affine algebras, J. Amer. Math. Soc. 14 (2001), no. 1, 145–238. MR 1808477, DOI 10.1090/S0894-0347-00-00353-2
- Hiraku Nakajima, $T$-analogue of the $q$-characters of finite dimensional representations of quantum affine algebras, Physics and combinatorics, 2000 (Nagoya), World Sci. Publ., River Edge, NJ, 2001, pp. 196–219. MR 1872257, DOI 10.1142/9789812810007_{0}009 Na-qchar-main —, Quiver varieties and $t$–analogs of $q$–characters of quantum affine algebras, preprint, arXiv:math.QA/0105173. Na:AD —, $t$–analogs of $q$–characters of quantum affine algebras of type $A_n$, $D_n$, to appear.
- M. Varagnolo and E. Vasserot, Standard modules of quantum affine algebras, Duke Math. J. 111 (2002), no. 3, 509–533. MR 1885830, DOI 10.1215/S0012-7094-02-11135-1 VV2 —, Perverse sheaves and quantum Grothendieck rings, preprint, arXiv:math. QA/0103182.
Bibliographic Information
- Hiraku Nakajima
- Affiliation: Department of Mathematics, Kyoto University, Kyoto 606-8502, Japan
- MR Author ID: 248505
- Email: nakajima@kusm.kyoto-u.ac.jp
- Received by editor(s): April 29, 2002
- Published electronically: July 10, 2003
- Additional Notes: Supported by the Grant-in-aid for Scientific Research (No.13640019), JSPS
- © Copyright 2003 American Mathematical Society
- Journal: Represent. Theory 7 (2003), 259-274
- MSC (2000): Primary 17B37; Secondary 81R50, 82B23
- DOI: https://doi.org/10.1090/S1088-4165-03-00164-X
- MathSciNet review: 1993360
Dedicated: Dedicated to Professor Takushiro Ochiai on his sixtieth birthday