Category $\mathcal O$: Quivers and endomorphism rings of projectives
HTML articles powered by AMS MathViewer
- by Catharina Stroppel
- Represent. Theory 7 (2003), 322-345
- DOI: https://doi.org/10.1090/S1088-4165-03-00152-3
- Published electronically: August 8, 2003
- PDF | Request permission
Abstract:
We describe an algorithm for computing quivers of category $\mathcal O$ of a finite dimensional semisimple Lie algebra. The main tool for this is Soergel’s description of the endomorphism ring of the antidominant indecomposable projective module of a regular block as an algebra of coinvariants. We give explicit calculations for root systems of rank 1 and 2 for regular and singular blocks and also quivers for regular blocks for type $A_3$. The main result in this paper is a necessary and sufficient condition for an endomorphism ring of an indecomposable projective object of $\mathcal O$ to be commutative. We give also an explicit formula for the socle of a projective object with a short proof using Soergel’s functor $\mathbb V$ and finish with a generalization of this functor to Harish-Chandra bimodules and parabolic versions of category $\mathcal O$.References
- L. Kantorovitch, The method of successive approximations for functional equations, Acta Math. 71 (1939), 63–97. MR 95, DOI 10.1007/BF02547750
- Maurice Auslander, Idun Reiten, and Sverre O. Smalø, Representation theory of Artin algebras, Cambridge Studies in Advanced Mathematics, vol. 36, Cambridge University Press, Cambridge, 1995. MR 1314422, DOI 10.1017/CBO9780511623608
- Hyman Bass, Algebraic $K$-theory, W. A. Benjamin, Inc., New York-Amsterdam, 1968. MR 0249491
- Alexandre Beĭlinson and Joseph Bernstein, Localisation de $g$-modules, C. R. Acad. Sci. Paris Sér. I Math. 292 (1981), no. 1, 15–18 (French, with English summary). MR 610137
- Joseph Bernstein, Trace in categories, Operator algebras, unitary representations, enveloping algebras, and invariant theory (Paris, 1989) Progr. Math., vol. 92, Birkhäuser Boston, Boston, MA, 1990, pp. 417–423. MR 1103598
- J. N. Bernstein and S. I. Gel′fand, Tensor products of finite- and infinite-dimensional representations of semisimple Lie algebras, Compositio Math. 41 (1980), no. 2, 245–285. MR 581584 [BGG]BGG I. N. Bernstein, I. M. Gelfand, S. I. Gelfand : A category of $\mathfrak {g}$-modules, Funct. Anal. Appl. 10 (1976), 87-92.
- Alexander Beilinson, Victor Ginzburg, and Wolfgang Soergel, Koszul duality patterns in representation theory, J. Amer. Math. Soc. 9 (1996), no. 2, 473–527. MR 1322847, DOI 10.1090/S0894-0347-96-00192-0
- J.-L. Brylinski and M. Kashiwara, Kazhdan-Lusztig conjecture and holonomic systems, Invent. Math. 64 (1981), no. 3, 387–410. MR 632980, DOI 10.1007/BF01389272 [Bo]Bo2N. Bourbaki: Groupes et algèbre de Lie, Masson 1994.
- E. Cline, B. Parshall, and L. Scott, Finite-dimensional algebras and highest weight categories, J. Reine Angew. Math. 391 (1988), 85–99. MR 961165, DOI 10.1515/crll.1988.391.85
- Jacques Dixmier, Enveloping algebras, Graduate Studies in Mathematics, vol. 11, American Mathematical Society, Providence, RI, 1996. Revised reprint of the 1977 translation. MR 1393197, DOI 10.1090/gsm/011
- James E. Humphreys, Introduction to Lie algebras and representation theory, Graduate Texts in Mathematics, vol. 9, Springer-Verlag, New York-Berlin, 1978. Second printing, revised. MR 499562
- Ronald S. Irving, The socle filtration of a Verma module, Ann. Sci. École Norm. Sup. (4) 21 (1988), no. 1, 47–65. MR 944101, DOI 10.24033/asens.1550
- Ronald S. Irving, Projective modules in the category ${\scr O}_S$: self-duality, Trans. Amer. Math. Soc. 291 (1985), no. 2, 701–732. MR 800259, DOI 10.1090/S0002-9947-1985-0800259-9
- Jens Carsten Jantzen, Representations of algebraic groups, Pure and Applied Mathematics, vol. 131, Academic Press, Inc., Boston, MA, 1987. MR 899071, DOI 10.1007/BFb0069521
- Jens Carsten Jantzen, Einhüllende Algebren halbeinfacher Lie-Algebren, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 3, Springer-Verlag, Berlin, 1983 (German). MR 721170, DOI 10.1007/978-3-642-68955-0 [Jau]J O. Jauch: Endomorphismenringe projektiver Objekte in der parabolischen Kategorie $\mathcal {O}$, Diplomarbeit, Universität Freiburg 1999.
- Bertram Kostant, Lie group representations on polynomial rings, Amer. J. Math. 85 (1963), 327–404. MR 158024, DOI 10.2307/2373130
- Steffen König, Inger Heidi Slungård, and Changchang Xi, Double centralizer properties, dominant dimension, and tilting modules, J. Algebra 240 (2001), no. 1, 393–412. MR 1830559, DOI 10.1006/jabr.2000.8726
- David Kazhdan and George Lusztig, Representations of Coxeter groups and Hecke algebras, Invent. Math. 53 (1979), no. 2, 165–184. MR 560412, DOI 10.1007/BF01390031
- Masaki Kashiwara and Pierre Schapira, Sheaves on manifolds, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 292, Springer-Verlag, Berlin, 1994. With a chapter in French by Christian Houzel; Corrected reprint of the 1990 original. MR 1299726, DOI 10.1007/978-3-662-02998-5_{5} [La]LaS. Lang: Algebra, Addison-Wesley, 1997. [MS]MSD. Milicic, W. Soergel: Twisted Harish-Chandra sheaves and Whittaker modules: The non-degenerate case, preprint.
- Wolfgang Soergel, Kategorie $\scr O$, perverse Garben und Moduln über den Koinvarianten zur Weylgruppe, J. Amer. Math. Soc. 3 (1990), no. 2, 421–445 (German, with English summary). MR 1029692, DOI 10.1090/S0894-0347-1990-1029692-5
- Wolfgang Soergel, The combinatorics of Harish-Chandra bimodules, J. Reine Angew. Math. 429 (1992), 49–74. MR 1173115, DOI 10.1515/crll.1992.429.49
- Wolfgang Soergel, Kazhdan-Lusztig polynomials and a combinatoric[s] for tilting modules, Represent. Theory 1 (1997), 83–114. MR 1444322, DOI 10.1090/S1088-4165-97-00021-6 [St]StC. Stroppel: Der Kombinatorikfunktor $\mathbb V$: Graduierte Kategorie $\mathcal O$, Hauptserien und primitive Ideale, Dissertation Universität Freiburg i. Br. (2001).
- Hiroyuki Tachikawa, Quasi-Frobenius rings and generalizations. $\textrm {QF}-3$ and $\textrm {QF}-1$ rings, Lecture Notes in Mathematics, Vol. 351, Springer-Verlag, Berlin-New York, 1973. Notes by Claus Michael Ringel. MR 0349740, DOI 10.1007/BFb0059997
Bibliographic Information
- Catharina Stroppel
- Affiliation: Mathematische Fakultät, Universität Freiburg, Germany
- Email: stroppel@imf.au.dk and cs93@le.ac.uk
- Received by editor(s): January 7, 2002
- Received by editor(s) in revised form: April 7, 2003, and June 10, 2003
- Published electronically: August 8, 2003
- Additional Notes: The author was partially supported by EEC TMR-Network ERB FMRX-CT97-0100
- © Copyright 2003 American Mathematical Society
- Journal: Represent. Theory 7 (2003), 322-345
- MSC (2000): Primary 17B10, 16G20
- DOI: https://doi.org/10.1090/S1088-4165-03-00152-3
- MathSciNet review: 2017061