## Elliptic central characters and blocks of finite dimensional representations of quantum affine algebras

HTML articles powered by AMS MathViewer

- by Pavel I. Etingof and Adriano A. Moura PDF
- Represent. Theory
**7**(2003), 346-373 Request permission

## Abstract:

The category of finite dimensional (type 1) representations of a quantum affine algebra $U_q(\widehat {{\mathfrak g}})$ is not semisimple. However, as any abelian category with finite-length objects, it admits a unique decomposition in a direct sum of indecomposable subcategories (blocks). We define the elliptic central character of a finite dimensional (type 1) representation of $U_q(\widehat {{\mathfrak g}})$ and show that the block decomposition of this category is parametrized by these elliptic central characters.## References

- Tatsuya Akasaka and Masaki Kashiwara,
*Finite-dimensional representations of quantum affine algebras*, Publ. Res. Inst. Math. Sci.**33**(1997), no.Β 5, 839β867. MR**1607008**, DOI 10.2977/prims/1195145020 - Jonathan Beck,
*Braid group action and quantum affine algebras*, Comm. Math. Phys.**165**(1994), no.Β 3, 555β568. MR**1301623**, DOI 10.1007/BF02099423 - Vyjayanthi Chari,
*Braid group actions and tensor products*, Int. Math. Res. Not.**7**(2002), 357β382. MR**1883181**, DOI 10.1155/S107379280210612X - Vyjayanthi Chari and Andrew Pressley,
*Fundamental representations of Yangians and singularities of $R$-matrices*, J. Reine Angew. Math.**417**(1991), 87β128. MR**1103907**, DOI 10.1515/crll.1991.417.87 - Vyjayanthi Chari and Andrew Pressley,
*Quantum affine algebras and affine Hecke algebras*, Pacific J. Math.**174**(1996), no.Β 2, 295β326. MR**1405590**, DOI 10.2140/pjm.1996.174.295 - L. Kantorovitch,
*The method of successive approximations for functional equations*, Acta Math.**71**(1939), 63β97. MR**95**, DOI 10.1007/BF02547750 - Vyjayanthi Chari and Andrew Pressley,
*Quantum affine algebras and their representations*, Representations of groups (Banff, AB, 1994) CMS Conf. Proc., vol. 16, Amer. Math. Soc., Providence, RI, 1995, pp.Β 59β78. MR**1357195**, DOI 10.1007/BF00750760 - Vyjayanthi Chari and Andrew Pressley,
*Fundamental representations of Yangians and singularities of $R$-matrices*, J. Reine Angew. Math.**417**(1991), 87β128. MR**1103907**, DOI 10.1007/BF02101006 - Vyjayanthi Chari and Andrew Pressley,
*Weyl modules for classical and quantum affine algebras*, Represent. Theory**5**(2001), 191β223. MR**1850556**, DOI 10.1090/S1088-4165-01-00115-7
Dri85 Drinfeld, V., Hopf algebras and the quantum Yang-Baxter equations. - V. G. Drinfelβ²d,
*A new realization of Yangians and of quantum affine algebras*, Dokl. Akad. Nauk SSSR**296**(1987), no.Β 1, 13β17 (Russian); English transl., Soviet Math. Dokl.**36**(1988), no.Β 2, 212β216. MR**914215** - Pavel I. Etingof, Igor B. Frenkel, and Alexander A. Kirillov Jr.,
*Lectures on representation theory and Knizhnik-Zamolodchikov equations*, Mathematical Surveys and Monographs, vol. 58, American Mathematical Society, Providence, RI, 1998. MR**1629472**, DOI 10.1090/surv/058
EtMo01 Etingof, P. and Moura, A., On the quantum Kazhdan-Luzstig functor. - Edward Frenkel and Evgeny Mukhin,
*Combinatorics of $q$-characters of finite-dimensional representations of quantum affine algebras*, Comm. Math. Phys.**216**(2001), no.Β 1, 23β57. MR**1810773**, DOI 10.1007/s002200000323 - Edward Frenkel and Nicolai Reshetikhin,
*Deformations of $\scr W$-algebras associated to simple Lie algebras*, Comm. Math. Phys.**197**(1998), no.Β 1, 1β32. MR**1646483**, DOI 10.1007/BF02099206 - Edward Frenkel and Nicolai Reshetikhin,
*The $q$-characters of representations of quantum affine algebras and deformations of $\scr W$-algebras*, Recent developments in quantum affine algebras and related topics (Raleigh, NC, 1998) Contemp. Math., vol. 248, Amer. Math. Soc., Providence, RI, 1999, pp.Β 163β205. MR**1745260**, DOI 10.1090/conm/248/03823 - I. B. Frenkel and N. Yu. Reshetikhin,
*Quantum affine algebras and holonomic difference equations*, Comm. Math. Phys.**146**(1992), no.Β 1, 1β60. MR**1163666**, DOI 10.1007/BF02099206 - Michio Jimbo,
*A $q$-difference analogue of $U({\mathfrak {g}})$ and the Yang-Baxter equation*, Lett. Math. Phys.**10**(1985), no.Β 1, 63β69. MR**797001**, DOI 10.1007/BF00704588 - Michio Jimbo,
*A $q$-analogue of $U({\mathfrak {g}}{\mathfrak {l}}(N+1))$, Hecke algebra, and the Yang-Baxter equation*, Lett. Math. Phys.**11**(1986), no.Β 3, 247β252. MR**841713**, DOI 10.1007/BF00400222 - Masaki Kashiwara,
*On level-zero representations of quantized affine algebras*, Duke Math. J.**112**(2002), no.Β 1, 117β175. MR**1890649**, DOI 10.1215/S0012-9074-02-11214-9 - D. Kazhdan and Y. Soibelman,
*Representations of quantum affine algebras*, Selecta Math. (N.S.)**1**(1995), no.Β 3, 537β595. MR**1366624**, DOI 10.1007/BF01589498 - S. M. Khoroshkin and V. N. Tolstoy,
*Extremal projector and universal $R$-matrix for quantized contragredient Lie (super)algebras*, Quantum groups and related topics (WrocΕaw, 1991) Math. Phys. Stud., vol. 13, Kluwer Acad. Publ., Dordrecht, 1992, pp.Β 23β32. MR**1205598**, DOI 10.1007/978-94-011-2801-8_{3}
Mou01 Moura, A., Elliptic dynamical R-matrices from the monodromy of the q-Knizhnik-Zamolodchikov equations for the standard representation of ${U}_q(\tilde {\mathfrak {sl}}_{n+1})$.

*Soviet Math. Dokl.*, 32:254β258, 1985.

*preprint*. QA/0203003.

*preprint*. rt/0112145. Nak02 Nakajima, H., Extremal weight modules of quantum affine algebras.

*preprint*. QA/0204183.

## Additional Information

**Pavel I. Etingof**- Affiliation: Massachussets Institute of Technology, 77 Massachussets Ave., Room 2-176, Cambridge, Massachusetts 02139
- MR Author ID: 289118
- Email: etingof@math.mit.edu
**Adriano A. Moura**- Affiliation: IMECC/UNICAMP, Caixa Postal: 6065, CEP: 13083-970, Campinas SP Brazil
- Email: adrianoam@ime.unicamp.br
- Received by editor(s): April 24, 2002
- Received by editor(s) in revised form: December 10, 2002
- Published electronically: August 26, 2003
- © Copyright 2003 American Mathematical Society
- Journal: Represent. Theory
**7**(2003), 346-373 - MSC (2000): Primary 20G42
- DOI: https://doi.org/10.1090/S1088-4165-03-00201-2
- MathSciNet review: 2017062

Dedicated: For Igor Frenkel, on the occasion of his 50th birthday