## Multiplicity-free products and restrictions of Weyl characters

HTML articles powered by AMS MathViewer

- by John R. Stembridge
- Represent. Theory
**7**(2003), 404-439 - DOI: https://doi.org/10.1090/S1088-4165-03-00150-X
- Published electronically: October 7, 2003
- PDF | Request permission

## Abstract:

We classify all multiplicity-free products of Weyl characters, or equivalently, all multiplicity-free tensor products of irreducible representations of complex semisimple Lie algebras. As a corollary, we also obtain the classification of all multiplicity-free restrictions of irreducible representations to reductive subalgebras of parabolic type.## References

- W. J. Trjitzinsky,
*General theory of singular integral equations with real kernels*, Trans. Amer. Math. Soc.**46**(1939), 202–279. MR**92**, DOI 10.1090/S0002-9947-1939-0000092-6
[B]B R. Brauer, - Roger Howe,
*Perspectives on invariant theory: Schur duality, multiplicity-free actions and beyond*, The Schur lectures (1992) (Tel Aviv), Israel Math. Conf. Proc., vol. 8, Bar-Ilan Univ., Ramat Gan, 1995, pp. 1–182. MR**1321638** - James E. Humphreys,
*Introduction to Lie algebras and representation theory*, Graduate Texts in Mathematics, Vol. 9, Springer-Verlag, New York-Berlin, 1972. MR**0323842**, DOI 10.1007/978-1-4612-6398-2 - Masaki Kashiwara,
*On crystal bases*, Representations of groups (Banff, AB, 1994) CMS Conf. Proc., vol. 16, Amer. Math. Soc., Providence, RI, 1995, pp. 155–197. MR**1357199** - R. C. King and B. G. Wybourne,
*Multiplicity-free tensor products of irreducible representations of the exceptional Lie groups*, J. Phys. A**35**(2002), no. 15, 3489–3513. MR**1907375**, DOI 10.1088/0305-4470/35/15/310
[Kl]Kl A. U. Klimyk, - Peter Littelmann,
*A Littlewood-Richardson rule for symmetrizable Kac-Moody algebras*, Invent. Math.**116**(1994), no. 1-3, 329–346. MR**1253196**, DOI 10.1007/BF01231564 - Peter Littelmann,
*On spherical double cones*, J. Algebra**166**(1994), no. 1, 142–157. MR**1276821**, DOI 10.1006/jabr.1994.1145 - Peter Littelmann,
*Paths and root operators in representation theory*, Ann. of Math. (2)**142**(1995), no. 3, 499–525. MR**1356780**, DOI 10.2307/2118553 - Peter Magyar, Jerzy Weyman, and Andrei Zelevinsky,
*Multiple flag varieties of finite type*, Adv. Math.**141**(1999), no. 1, 97–118. MR**1667147**, DOI 10.1006/aima.1998.1776 - Peter Magyar, Jerzy Weyman, and Andrei Zelevinsky,
*Symplectic multiple flag varieties of finite type*, J. Algebra**230**(2000), no. 1, 245–265. MR**1774766**, DOI 10.1006/jabr.2000.8313 - Robert A. Proctor,
*Bruhat lattices, plane partition generating functions, and minuscule representations*, European J. Combin.**5**(1984), no. 4, 331–350. MR**782055**, DOI 10.1016/S0195-6698(84)80037-2 - K. R. Parthasarathy, R. Ranga Rao, and V. S. Varadarajan,
*Representations of complex semi-simple Lie groups and Lie algebras*, Ann. of Math. (2)**85**(1967), 383–429. MR**225936**, DOI 10.2307/1970351 - John R. Stembridge,
*Computational aspects of root systems, Coxeter groups, and Weyl characters*, Interaction of combinatorics and representation theory, MSJ Mem., vol. 11, Math. Soc. Japan, Tokyo, 2001, pp. 1–38. MR**1862148**, DOI 10.2969/msjmemoirs/01101C010 - John R. Stembridge,
*Multiplicity-free products of Schur functions*, Ann. Comb.**5**(2001), no. 2, 113–121. MR**1904379**, DOI 10.1007/s00026-001-8008-6 - John R. Stembridge,
*Combinatorial models for Weyl characters*, Adv. Math.**168**(2002), no. 1, 96–131. MR**1907320**, DOI 10.1006/aima.2001.2050 - John R. Stembridge,
*A weighted enumeration of maximal chains in the Bruhat order*, J. Algebraic Combin.**15**(2002), no. 3, 291–301. MR**1900629**, DOI 10.1023/A:1015068609503 - Jerzy Weyman,
*Pieri’s formulas for classical groups*, Invariant theory (Denton, TX, 1986) Contemp. Math., vol. 88, Amer. Math. Soc., Providence, RI, 1989, pp. 177–184. MR**999990**, DOI 10.1090/conm/088/999990

*Sur la multiplication des charactéristiques des groupes continus et semi-simples*, C. R. Acad. Sci. Paris

**204**(1937), 1784–1786.

*Decomposition of a direct product of irreducible representations of a semisimple Lie algebra into a direct sum of irreducible representations*, Amer. Math. Soc. Transl., Series 2

**76**(1968), 63–73.

## Bibliographic Information

**John R. Stembridge**- Affiliation: Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109–1109
- Email: jrs@umich.edu
- Received by editor(s): December 12, 2001
- Received by editor(s) in revised form: September 22, 2003
- Published electronically: October 7, 2003
- Additional Notes: This work was supported by NSF Grant DMS–0070685
- © Copyright 2003 American Mathematical Society
- Journal: Represent. Theory
**7**(2003), 404-439 - MSC (2000): Primary 17B10, 05E15; Secondary 20G05, 22E46
- DOI: https://doi.org/10.1090/S1088-4165-03-00150-X
- MathSciNet review: 2017064