Multiplicity-free products and restrictions of Weyl characters
HTML articles powered by AMS MathViewer
- by John R. Stembridge
- Represent. Theory 7 (2003), 404-439
- DOI: https://doi.org/10.1090/S1088-4165-03-00150-X
- Published electronically: October 7, 2003
- PDF | Request permission
Abstract:
We classify all multiplicity-free products of Weyl characters, or equivalently, all multiplicity-free tensor products of irreducible representations of complex semisimple Lie algebras. As a corollary, we also obtain the classification of all multiplicity-free restrictions of irreducible representations to reductive subalgebras of parabolic type.References
- W. J. Trjitzinsky, General theory of singular integral equations with real kernels, Trans. Amer. Math. Soc. 46 (1939), 202–279. MR 92, DOI 10.1090/S0002-9947-1939-0000092-6 [B]B R. Brauer, Sur la multiplication des charactéristiques des groupes continus et semi-simples, C. R. Acad. Sci. Paris 204 (1937), 1784–1786.
- Roger Howe, Perspectives on invariant theory: Schur duality, multiplicity-free actions and beyond, The Schur lectures (1992) (Tel Aviv), Israel Math. Conf. Proc., vol. 8, Bar-Ilan Univ., Ramat Gan, 1995, pp. 1–182. MR 1321638
- James E. Humphreys, Introduction to Lie algebras and representation theory, Graduate Texts in Mathematics, Vol. 9, Springer-Verlag, New York-Berlin, 1972. MR 0323842, DOI 10.1007/978-1-4612-6398-2
- Masaki Kashiwara, On crystal bases, Representations of groups (Banff, AB, 1994) CMS Conf. Proc., vol. 16, Amer. Math. Soc., Providence, RI, 1995, pp. 155–197. MR 1357199
- R. C. King and B. G. Wybourne, Multiplicity-free tensor products of irreducible representations of the exceptional Lie groups, J. Phys. A 35 (2002), no. 15, 3489–3513. MR 1907375, DOI 10.1088/0305-4470/35/15/310 [Kl]Kl A. U. Klimyk, Decomposition of a direct product of irreducible representations of a semisimple Lie algebra into a direct sum of irreducible representations, Amer. Math. Soc. Transl., Series 2 76 (1968), 63–73.
- Peter Littelmann, A Littlewood-Richardson rule for symmetrizable Kac-Moody algebras, Invent. Math. 116 (1994), no. 1-3, 329–346. MR 1253196, DOI 10.1007/BF01231564
- Peter Littelmann, On spherical double cones, J. Algebra 166 (1994), no. 1, 142–157. MR 1276821, DOI 10.1006/jabr.1994.1145
- Peter Littelmann, Paths and root operators in representation theory, Ann. of Math. (2) 142 (1995), no. 3, 499–525. MR 1356780, DOI 10.2307/2118553
- Peter Magyar, Jerzy Weyman, and Andrei Zelevinsky, Multiple flag varieties of finite type, Adv. Math. 141 (1999), no. 1, 97–118. MR 1667147, DOI 10.1006/aima.1998.1776
- Peter Magyar, Jerzy Weyman, and Andrei Zelevinsky, Symplectic multiple flag varieties of finite type, J. Algebra 230 (2000), no. 1, 245–265. MR 1774766, DOI 10.1006/jabr.2000.8313
- Robert A. Proctor, Bruhat lattices, plane partition generating functions, and minuscule representations, European J. Combin. 5 (1984), no. 4, 331–350. MR 782055, DOI 10.1016/S0195-6698(84)80037-2
- K. R. Parthasarathy, R. Ranga Rao, and V. S. Varadarajan, Representations of complex semi-simple Lie groups and Lie algebras, Ann. of Math. (2) 85 (1967), 383–429. MR 225936, DOI 10.2307/1970351
- John R. Stembridge, Computational aspects of root systems, Coxeter groups, and Weyl characters, Interaction of combinatorics and representation theory, MSJ Mem., vol. 11, Math. Soc. Japan, Tokyo, 2001, pp. 1–38. MR 1862148, DOI 10.2969/msjmemoirs/01101C010
- John R. Stembridge, Multiplicity-free products of Schur functions, Ann. Comb. 5 (2001), no. 2, 113–121. MR 1904379, DOI 10.1007/s00026-001-8008-6
- John R. Stembridge, Combinatorial models for Weyl characters, Adv. Math. 168 (2002), no. 1, 96–131. MR 1907320, DOI 10.1006/aima.2001.2050
- John R. Stembridge, A weighted enumeration of maximal chains in the Bruhat order, J. Algebraic Combin. 15 (2002), no. 3, 291–301. MR 1900629, DOI 10.1023/A:1015068609503
- Jerzy Weyman, Pieri’s formulas for classical groups, Invariant theory (Denton, TX, 1986) Contemp. Math., vol. 88, Amer. Math. Soc., Providence, RI, 1989, pp. 177–184. MR 999990, DOI 10.1090/conm/088/999990
Bibliographic Information
- John R. Stembridge
- Affiliation: Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109–1109
- Email: jrs@umich.edu
- Received by editor(s): December 12, 2001
- Received by editor(s) in revised form: September 22, 2003
- Published electronically: October 7, 2003
- Additional Notes: This work was supported by NSF Grant DMS–0070685
- © Copyright 2003 American Mathematical Society
- Journal: Represent. Theory 7 (2003), 404-439
- MSC (2000): Primary 17B10, 05E15; Secondary 20G05, 22E46
- DOI: https://doi.org/10.1090/S1088-4165-03-00150-X
- MathSciNet review: 2017064