Multiplicity-free products and restrictions of Weyl characters
Author:
John R. Stembridge
Journal:
Represent. Theory 7 (2003), 404-439
MSC (2000):
Primary 17B10, 05E15; Secondary 20G05, 22E46
DOI:
https://doi.org/10.1090/S1088-4165-03-00150-X
Published electronically:
October 7, 2003
MathSciNet review:
2017064
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: We classify all multiplicity-free products of Weyl characters, or equivalently, all multiplicity-free tensor products of irreducible representations of complex semisimple Lie algebras. As a corollary, we also obtain the classification of all multiplicity-free restrictions of irreducible representations to reductive subalgebras of parabolic type.
-
[BZ]BZ A. D. Berenstein and A. V. Zelevinsky, When is the multiplicity of a weight equal to 1?, Funct. Anal. Appl. 24 (1990), 259–269.
[B]B R. Brauer, Sur la multiplication des charactéristiques des groupes continus et semi-simples, C. R. Acad. Sci. Paris 204 (1937), 1784–1786.
- Roger Howe, Perspectives on invariant theory: Schur duality, multiplicity-free actions and beyond, The Schur lectures (1992) (Tel Aviv), Israel Math. Conf. Proc., vol. 8, Bar-Ilan Univ., Ramat Gan, 1995, pp. 1–182. MR 1321638
- James E. Humphreys, Introduction to Lie algebras and representation theory, Springer-Verlag, New York-Berlin, 1972. Graduate Texts in Mathematics, Vol. 9. MR 0323842
- Masaki Kashiwara, On crystal bases, Representations of groups (Banff, AB, 1994) CMS Conf. Proc., vol. 16, Amer. Math. Soc., Providence, RI, 1995, pp. 155–197. MR 1357199
- R. C. King and B. G. Wybourne, Multiplicity-free tensor products of irreducible representations of the exceptional Lie groups, J. Phys. A 35 (2002), no. 15, 3489–3513. MR 1907375, DOI https://doi.org/10.1088/0305-4470/35/15/310 [Kl]Kl A. U. Klimyk, Decomposition of a direct product of irreducible representations of a semisimple Lie algebra into a direct sum of irreducible representations, Amer. Math. Soc. Transl., Series 2 76 (1968), 63–73.
- Peter Littelmann, A Littlewood-Richardson rule for symmetrizable Kac-Moody algebras, Invent. Math. 116 (1994), no. 1-3, 329–346. MR 1253196, DOI https://doi.org/10.1007/BF01231564
- Peter Littelmann, On spherical double cones, J. Algebra 166 (1994), no. 1, 142–157. MR 1276821, DOI https://doi.org/10.1006/jabr.1994.1145
- Peter Littelmann, Paths and root operators in representation theory, Ann. of Math. (2) 142 (1995), no. 3, 499–525. MR 1356780, DOI https://doi.org/10.2307/2118553
- Peter Magyar, Jerzy Weyman, and Andrei Zelevinsky, Multiple flag varieties of finite type, Adv. Math. 141 (1999), no. 1, 97–118. MR 1667147, DOI https://doi.org/10.1006/aima.1998.1776
- Peter Magyar, Jerzy Weyman, and Andrei Zelevinsky, Symplectic multiple flag varieties of finite type, J. Algebra 230 (2000), no. 1, 245–265. MR 1774766, DOI https://doi.org/10.1006/jabr.2000.8313
- Robert A. Proctor, Bruhat lattices, plane partition generating functions, and minuscule representations, European J. Combin. 5 (1984), no. 4, 331–350. MR 782055, DOI https://doi.org/10.1016/S0195-6698%2884%2980037-2
- K. R. Parthasarathy, R. Ranga Rao, and V. S. Varadarajan, Representations of complex semi-simple Lie groups and Lie algebras, Ann. of Math. (2) 85 (1967), 383–429. MR 225936, DOI https://doi.org/10.2307/1970351
- John R. Stembridge, Computational aspects of root systems, Coxeter groups, and Weyl characters, Interaction of combinatorics and representation theory, MSJ Mem., vol. 11, Math. Soc. Japan, Tokyo, 2001, pp. 1–38. MR 1862148
- John R. Stembridge, Multiplicity-free products of Schur functions, Ann. Comb. 5 (2001), no. 2, 113–121. MR 1904379, DOI https://doi.org/10.1007/s00026-001-8008-6
- John R. Stembridge, Combinatorial models for Weyl characters, Adv. Math. 168 (2002), no. 1, 96–131. MR 1907320, DOI https://doi.org/10.1006/aima.2001.2050
- John R. Stembridge, A weighted enumeration of maximal chains in the Bruhat order, J. Algebraic Combin. 15 (2002), no. 3, 291–301. MR 1900629, DOI https://doi.org/10.1023/A%3A1015068609503
- Jerzy Weyman, Pieri’s formulas for classical groups, Invariant theory (Denton, TX, 1986) Contemp. Math., vol. 88, Amer. Math. Soc., Providence, RI, 1989, pp. 177–184. MR 999990, DOI https://doi.org/10.1090/conm/088/999990
Retrieve articles in Representation Theory of the American Mathematical Society with MSC (2000): 17B10, 05E15, 20G05, 22E46
Retrieve articles in all journals with MSC (2000): 17B10, 05E15, 20G05, 22E46
Additional Information
John R. Stembridge
Affiliation:
Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109–1109
Email:
jrs@umich.edu
Received by editor(s):
December 12, 2001
Received by editor(s) in revised form:
September 22, 2003
Published electronically:
October 7, 2003
Additional Notes:
This work was supported by NSF Grant DMS–0070685
Article copyright:
© Copyright 2003
American Mathematical Society