Projective rational smoothness of varieties of representations for quivers of type $A$
HTML articles powered by AMS MathViewer
- by Ralf Schiffler
- Represent. Theory 7 (2003), 549-586
- DOI: https://doi.org/10.1090/S1088-4165-03-00182-1
- Published electronically: November 18, 2003
- PDF | Request permission
Abstract:
Let ${\mathbf U}^+$ be the positive part of the quantized enveloping algebra ${\mathbf U}$ of type $A_n$. The change of basis between canonical, and PBW-basis of ${\mathbf U}^+$ has a geometric interpretation in terms of local intersection cohomology of some affine algebraic varieties, namely the Zariski closures of orbits of representations of a quiver of type $A_n$. In this paper we study the local rational smoothness of these orbit closures and, in particular, the rational smoothness of their projectivization.References
- Sara Billey and V. Lakshmibai, Singular loci of Schubert varieties, Progress in Mathematics, vol. 182, Birkhäuser Boston, Inc., Boston, MA, 2000. MR 1782635, DOI 10.1007/978-1-4612-1324-6
- Klaus Bongartz, Degenerations for representations of tame quivers, Ann. Sci. École Norm. Sup. (4) 28 (1995), no. 5, 647–668. MR 1341664, DOI 10.24033/asens.1728 [BS]BS Robert Bédard and Ralf Schiffler, Rational smoothness of varieties of representations for quivers of type $A$, preprint.
- Peter Gabriel, Finite representation type is open, Proceedings of the International Conference on Representations of Algebras (Carleton Univ., Ottawa, Ont., 1974) Carleton Math. Lecture Notes, No. 9, Carleton Univ., Ottawa, Ont., 1974, pp. Paper No. 10, 23. MR 0376769, DOI 10.1007/BFb0081219
- Peter Gabriel, Auslander-Reiten sequences and representation-finite algebras, Representation theory, I (Proc. Workshop, Carleton Univ., Ottawa, Ont., 1979), Lecture Notes in Math., vol. 831, Springer, Berlin, 1980, pp. 1–71. MR 607140, DOI 10.1007/BFb0089778
- M. Kashiwara, On crystal bases of the $Q$-analogue of universal enveloping algebras, Duke Math. J. 63 (1991), no. 2, 465–516. MR 1115118, DOI 10.1215/S0012-7094-91-06321-0
- G. Lusztig, Canonical bases arising from quantized enveloping algebras, J. Amer. Math. Soc. 3 (1990), no. 2, 447–498. MR 1035415, DOI 10.1090/S0894-0347-1990-1035415-6
- George Lusztig, Finite-dimensional Hopf algebras arising from quantized universal enveloping algebra, J. Amer. Math. Soc. 3 (1990), no. 1, 257–296. MR 1013053, DOI 10.1090/S0894-0347-1990-1013053-9
- Detlef Voigt, Induzierte Darstellungen in der Theorie der endlichen, algebraischen Gruppen, Lecture Notes in Mathematics, Vol. 592, Springer-Verlag, Berlin-New York, 1977 (German). Mit einer englischen Einführung. MR 0486168, DOI 10.1007/BFb0086128
Bibliographic Information
- Ralf Schiffler
- Affiliation: Département de mathématiques, Université du Québec à Montréal, case postale 8888, succursale Centre-Ville, Montréal (Québec), H3C 3P8 Canada
- MR Author ID: 724459
- Email: ralf@math.uqam.ca
- Received by editor(s): October 24, 2002
- Received by editor(s) in revised form: September 2, 2003
- Published electronically: November 18, 2003
- Additional Notes: The author was supported in part by FCAR Grant
- © Copyright 2003 American Mathematical Society
- Journal: Represent. Theory 7 (2003), 549-586
- MSC (2000): Primary 17B37; Secondary 32S60, 16G70
- DOI: https://doi.org/10.1090/S1088-4165-03-00182-1
- MathSciNet review: 2017067