Left cells in type $B_n$ with unequal parameters
HTML articles powered by AMS MathViewer
- by Cédric Bonnafé and Lacrimioara Iancu
- Represent. Theory 7 (2003), 587-609
- DOI: https://doi.org/10.1090/S1088-4165-03-00188-2
- Published electronically: November 19, 2003
- PDF | Request permission
Abstract:
Kazhdan and Lusztig have shown that the partition of the symmetric group ${\mathfrak {S}}_n$ into left cells is given by the Robinson–Schensted correspondence. The aim of this paper is to provide a similar description of the left cells in type $B_n$ for a special class of choices of unequal parameters. This is based on a generalization of the Robinson–Schensted correspondence in type $B_n$. We provide an explicit description of the left cell representations and show that they are irreducible and constructible.References
- Susumu Ariki, Robinson-Schensted correspondence and left cells, Combinatorial methods in representation theory (Kyoto, 1998) Adv. Stud. Pure Math., vol. 28, Kinokuniya, Tokyo, 2000, pp. 1–20. MR 1855588, DOI 10.2969/aspm/02810001
- Richard Dipper, Gordon James, and Eugene Murphy, Hecke algebras of type $B_n$ at roots of unity, Proc. London Math. Soc. (3) 70 (1995), no. 3, 505–528. MR 1317512, DOI 10.1112/plms/s3-70.3.505
- William Fulton, Young tableaux, London Mathematical Society Student Texts, vol. 35, Cambridge University Press, Cambridge, 1997. With applications to representation theory and geometry. MR 1464693, DOI 10.1017/CBO9780511626241
- Meinolf Geck, Constructible characters, leading coefficients and left cells for finite Coxeter groups with unequal parameters, Represent. Theory 6 (2002), 1–30. MR 1915085, DOI 10.1090/S1088-4165-02-00128-0 geck xi M. Geck, On the induction of Kazhdan-Lusztig cells, Bull. London Math. Soc. 35 (2003), 608–614.
- Meinolf Geck, Gerhard Hiss, Frank Lübeck, Gunter Malle, and Götz Pfeiffer, CHEVIE—a system for computing and processing generic character tables, Appl. Algebra Engrg. Comm. Comput. 7 (1996), no. 3, 175–210. Computational methods in Lie theory (Essen, 1994). MR 1486215, DOI 10.1007/BF01190329
- Meinolf Geck and Sungsoon Kim, Bases for the Bruhat-Chevalley order on all finite Coxeter groups, J. Algebra 197 (1997), no. 1, 278–310. MR 1480786, DOI 10.1006/jabr.1997.7096
- Meinolf Geck and Götz Pfeiffer, Characters of finite Coxeter groups and Iwahori-Hecke algebras, London Mathematical Society Monographs. New Series, vol. 21, The Clarendon Press, Oxford University Press, New York, 2000. MR 1778802
- J. J. Graham and G. I. Lehrer, Cellular algebras, Invent. Math. 123 (1996), no. 1, 1–34. MR 1376244, DOI 10.1007/BF01232365 iancu L. Iancu, Cellules de Kazhdan-Lusztig et correspondance de Robinson-Schensted, C. R. Acad. Sci. Paris, Sér. I 336 (2003), 791–794.
- David Kazhdan and George Lusztig, Representations of Coxeter groups and Hecke algebras, Invent. Math. 53 (1979), no. 2, 165–184. MR 560412, DOI 10.1007/BF01390031 Knuth3 D. E. Knuth, The art of computer programming, volume 3: Sorting and Searching, Addison-Wesley, Second Edition, 1998.
- G. Lusztig, Left cells in Weyl groups, Lie group representations, I (College Park, Md., 1982/1983) Lecture Notes in Math., vol. 1024, Springer, Berlin, 1983, pp. 99–111. MR 727851, DOI 10.1007/BFb0071433
- George Lusztig, Characters of reductive groups over a finite field, Annals of Mathematics Studies, vol. 107, Princeton University Press, Princeton, NJ, 1984. MR 742472, DOI 10.1515/9781400881772
- George Lusztig, Sur les cellules gauches des groupes de Weyl, C. R. Acad. Sci. Paris Sér. I Math. 302 (1986), no. 1, 5–8 (French, with English summary). MR 827096
- George Lusztig, Intersection cohomology methods in representation theory, Proceedings of the International Congress of Mathematicians, Vol. I, II (Kyoto, 1990) Math. Soc. Japan, Tokyo, 1991, pp. 155–174. MR 1159211 Lusztig02 G. Lusztig, Hecke algebras with unequal parameters, in CRM Monogr. Ser., Vol. 18, American Mathematical Society, 2003.
- I. G. Macdonald, Symmetric functions and Hall polynomials, 2nd ed., Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1995. With contributions by A. Zelevinsky; Oxford Science Publications. MR 1354144
- Soichi Okada, Wreath products by the symmetric groups and product posets of Young’s lattices, J. Combin. Theory Ser. A 55 (1990), no. 1, 14–32. MR 1070012, DOI 10.1016/0097-3165(90)90044-W
- Donald E. Taylor, The geometry of the classical groups, Sigma Series in Pure Mathematics, vol. 9, Heldermann Verlag, Berlin, 1992. MR 1189139
Bibliographic Information
- Cédric Bonnafé
- Affiliation: Laboratoire de Mathématiques de Besançon, Université de Franche-Comté, 16 Route de Gray, 25030 Besançon Cedex, France
- Email: bonnafe@math.univ-fcomte.fr
- Lacrimioara Iancu
- Affiliation: Laboratoire de Mathématiques de Besançon, Université de Franche-Comté, 16 Route de Gray, 25030 Besançon Cedex, France — and — Facultatea de Stiinte, Universitatea de Nord Baia Mare, Victoriei 76, RO-4800 Baia Mare, Romania
- Email: iancu@math.univ-fcomte.fr
- Received by editor(s): February 4, 2003
- Received by editor(s) in revised form: September 17, 2003
- Published electronically: November 19, 2003
- © Copyright 2003 American Mathematical Society
- Journal: Represent. Theory 7 (2003), 587-609
- MSC (2000): Primary 20C08; Secondary 20C15
- DOI: https://doi.org/10.1090/S1088-4165-03-00188-2
- MathSciNet review: 2017068