Skip to Main Content

Representation Theory

Published by the American Mathematical Society since 1997, this electronic-only journal is devoted to research in representation theory and seeks to maintain a high standard for exposition as well as for mathematical content. All articles are freely available to all readers and with no publishing fees for authors.

ISSN 1088-4165

The 2020 MCQ for Representation Theory is 0.71.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.


Familles de caractères de groupes de réflexions complexes
HTML articles powered by AMS MathViewer

by Gunter Malle and Raphaël Rouquier
Represent. Theory 7 (2003), 610-640
Published electronically: November 20, 2003


Nous étudions certains types de blocs d’algèbres de Hecke associées aux groupes de réflexions complexes qui généralisent les familles de caractères définies par Lusztig pour les groupes de Weyl. Nous déterminons ces blocs pour les groupes de réflexions spetsiaux et nous établissons un théorème de compatibilité entre familles et $d$-séries de Harish-Chandra.
Similar Articles
  • Retrieve articles in Representation Theory of the American Mathematical Society with MSC (2000): 20C08, 20C40
  • Retrieve articles in all journals with MSC (2000): 20C08, 20C40
Bibliographic Information
  • Gunter Malle
  • Affiliation: Fachbereich Mathematik/Informatik, Universität Kassel, Heinrich-Plett-Str. 40, D–34132 Kassel, Germany
  • MR Author ID: 225462
  • Email:
  • Raphaël Rouquier
  • Affiliation: UMR 7586 du CNRS et UFR de Mathématiques, Université Denis Diderot, Case 7012, 2 Place Jussieu, F–75251 Paris Cedex 05, France
  • MR Author ID: 353858
  • Email:
  • Received by editor(s): April 8, 2003
  • Received by editor(s) in revised form: October 2, 2003
  • Published electronically: November 20, 2003
  • © Copyright 2003 American Mathematical Society
  • Journal: Represent. Theory 7 (2003), 610-640
  • MSC (2000): Primary 20C08; Secondary 20C40
  • DOI:
  • MathSciNet review: 2017069